Cargando…
Entropy-Based Adaptive Nuclear Texture Features are Independent Prognostic Markers in a Total Population of Uterine Sarcomas
Nuclear texture analysis measures the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image and is a promising quantitative tool for prognosis of cancer. The aim of this study was to evaluate the prognostic value of entropy-based adaptive nuclear texture features in a...
Autores principales: | Nielsen, Birgitte, Hveem, Tarjei Sveinsgjerd, Kildal, Wanja, Abeler, Vera M, Kristensen, Gunnar B, Albregtsen, Fritz, Danielsen, Håvard E, Rohde, Gustavo K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409852/ https://www.ncbi.nlm.nih.gov/pubmed/25483227 http://dx.doi.org/10.1002/cyto.a.22601 |
Ejemplares similares
-
The Prognostic Value of Adaptive Nuclear Texture Features from Patient Gray Level Entropy Matrices in Early Stage Ovarian Cancer
por: Nielsen, Birgitte, et al.
Publicado: (2012) -
Prognostic Classification of Early Ovarian Cancer Based on very Low Dimensionality Adaptive Texture Feature Vectors from Cell Nuclei from Monolayers and Histological Sections
por: Nielsen, Birgitte, et al.
Publicado: (2001) -
Association Between Proportion of Nuclei With High Chromatin Entropy and Prognosis in Gynecological Cancers
por: Nielsen, Birgitte, et al.
Publicado: (2018) -
Cancer Prognosis Defined by the Combined Analysis of 8q, PTEN and ERG
por: Silva, Maria P., et al.
Publicado: (2016) -
The Use of Fractal Features from the Periphery of Cell Nuclei as a Classification Tool
por: Nielsen, Birgitte, et al.
Publicado: (1999)