Cargando…
Cross-tissue methylomic profiling strongly implicates a role for cortex-specific deregulation of ANK1 in Alzheimer’s disease neuropathology
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder characterized by progressive neuropathology and cognitive decline. We describe a cross-tissue analysis of methylomic variation in AD using samples from three independent human post-mortem brain cohorts. We identify a differentially met...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410018/ https://www.ncbi.nlm.nih.gov/pubmed/25129077 http://dx.doi.org/10.1038/nn.3782 |
Sumario: | Alzheimer’s disease (AD) is a chronic neurodegenerative disorder characterized by progressive neuropathology and cognitive decline. We describe a cross-tissue analysis of methylomic variation in AD using samples from three independent human post-mortem brain cohorts. We identify a differentially methylated region in the ankyrin 1 (ANK1) gene that is associated with neuropathology in the entorhinal cortex, a primary site of AD manifestation. This region was confirmed as significantly hypermethylated in two other cortical regions (superior temporal gyrus and prefrontal cortex) but not in the cerebellum, a region largely protected from neurodegeneration in AD, nor whole blood obtained pre-mortem, from the same individuals. Neuropathology-associated ANK1 hypermethylation was subsequently confirmed in cortical samples from three independent brain cohorts. This study represents the first epigenome-wide association study (EWAS) of AD employing a sequential replication design across multiple tissues, and highlights the power of this approach for identifying methylomic variation associated with complex disease. |
---|