Cargando…

Early Exposure to Intermediate-Frequency Magnetic Fields Alters Brain Biomarkers without Histopathological Changes in Adult Mice

Recently we have reported that intermediate-frequency magnetic field (IF-MF) exposure transiently altered the mRNA expression levels of memory function-related genes in the hippocampi of adult male mice. However, the effects of IF-MF exposure during brain development on neurological biomarkers have...

Descripción completa

Detalles Bibliográficos
Autores principales: Win-Shwe, Tin-Tin, Ohtani, Shin, Ushiyama, Akira, Kunugita, Naoki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410255/
https://www.ncbi.nlm.nih.gov/pubmed/25913185
http://dx.doi.org/10.3390/ijerph120404406
Descripción
Sumario:Recently we have reported that intermediate-frequency magnetic field (IF-MF) exposure transiently altered the mRNA expression levels of memory function-related genes in the hippocampi of adult male mice. However, the effects of IF-MF exposure during brain development on neurological biomarkers have not yet been clarified. In the present study, we investigated the effect of IF-MF exposure during development on neurological and immunological markers in the mouse hippocampus in 3- and 7-week-old male mice. Pregnant C57BL/6J mice were exposed to IF-MF (21 kHz, 3.8 mT) for one hour per day from organogenesis period day 7 to 17. At adolescence, some IF-MF-exposed mice were further divided into exposure, recovery, and sham-exposure groups. The adolescent-exposure groups were exposed again to IF-MF from postnatal day 27 to 48. The expression of mRNA in the hippocampi was examined using a real-time RT-PCR method, and microglia activation was examined by immunohistochemical analysis. The expression levels of NR1 and NR2B as well as transcription factors (CaMKIV, CREB1), inflammatory mediators (COX2, IL-1 β,TNF-α), and the oxidative stress marker heme-oxygenase (HO)-1 were significantly increased in the IF-MF-exposed mice, compared with the control group, in the 7-week-old mice, but not in the 3-week-old mice. Microglia activation was not different between the control and other groups. This study provides the first evidence that early exposure to IF-MF reversibly affects the NMDA receptor, its related signaling pathways, and inflammatory mediators in the hippocampus of young adult mice; these changes are transient and recover after termination of exposure without histopathological changes.