Cargando…
Assessing the Combinatorial Potential of the RiPP Cyanobactin tru Pathway
[Image: see text] Ribosomally produced natural products, the RiPPs, exhibit features that are potentially useful in the creation of large chemical libraries using simple mutagenesis. RiPPs are encoded on ribosomal precursor peptides, but they are extensively posttranslationally modified, endowing th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410914/ https://www.ncbi.nlm.nih.gov/pubmed/25140729 http://dx.doi.org/10.1021/sb500267d |
_version_ | 1782368387949658112 |
---|---|
author | Ruffner, Duane E. Schmidt, Eric W. Heemstra, John R. |
author_facet | Ruffner, Duane E. Schmidt, Eric W. Heemstra, John R. |
author_sort | Ruffner, Duane E. |
collection | PubMed |
description | [Image: see text] Ribosomally produced natural products, the RiPPs, exhibit features that are potentially useful in the creation of large chemical libraries using simple mutagenesis. RiPPs are encoded on ribosomal precursor peptides, but they are extensively posttranslationally modified, endowing them with properties that are useful in drug discovery and biotechnology. In order to determine which mutations are acceptable, strategies are required to determine sequence selectivity independently of the context of flanking amino acids. Here, we examined the absolute sequence selectivity of the trunkamide cyanobactin pathway, tru. A series of random double and quadruple simultaneous mutants were synthesized and produced in Escherichia coli. Out of a total of 763 mutated amino acids examined in 325 unique sequences, 323 amino acids were successfully incorporated in 159 sequences, leading to >300 new compounds. Rules for tru sequence selectivity were determined, which will be useful for the design and synthesis of combinatorial biosynthetic libraries. The results are also interpreted in comparison to the known natural products of tru and pat cyanobactin pathways. |
format | Online Article Text |
id | pubmed-4410914 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-44109142015-08-20 Assessing the Combinatorial Potential of the RiPP Cyanobactin tru Pathway Ruffner, Duane E. Schmidt, Eric W. Heemstra, John R. ACS Synth Biol [Image: see text] Ribosomally produced natural products, the RiPPs, exhibit features that are potentially useful in the creation of large chemical libraries using simple mutagenesis. RiPPs are encoded on ribosomal precursor peptides, but they are extensively posttranslationally modified, endowing them with properties that are useful in drug discovery and biotechnology. In order to determine which mutations are acceptable, strategies are required to determine sequence selectivity independently of the context of flanking amino acids. Here, we examined the absolute sequence selectivity of the trunkamide cyanobactin pathway, tru. A series of random double and quadruple simultaneous mutants were synthesized and produced in Escherichia coli. Out of a total of 763 mutated amino acids examined in 325 unique sequences, 323 amino acids were successfully incorporated in 159 sequences, leading to >300 new compounds. Rules for tru sequence selectivity were determined, which will be useful for the design and synthesis of combinatorial biosynthetic libraries. The results are also interpreted in comparison to the known natural products of tru and pat cyanobactin pathways. American Chemical Society 2014-08-20 2015-04-17 /pmc/articles/PMC4410914/ /pubmed/25140729 http://dx.doi.org/10.1021/sb500267d Text en Copyright © 2014 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Ruffner, Duane E. Schmidt, Eric W. Heemstra, John R. Assessing the Combinatorial Potential of the RiPP Cyanobactin tru Pathway |
title | Assessing the Combinatorial Potential of the RiPP
Cyanobactin tru Pathway |
title_full | Assessing the Combinatorial Potential of the RiPP
Cyanobactin tru Pathway |
title_fullStr | Assessing the Combinatorial Potential of the RiPP
Cyanobactin tru Pathway |
title_full_unstemmed | Assessing the Combinatorial Potential of the RiPP
Cyanobactin tru Pathway |
title_short | Assessing the Combinatorial Potential of the RiPP
Cyanobactin tru Pathway |
title_sort | assessing the combinatorial potential of the ripp
cyanobactin tru pathway |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410914/ https://www.ncbi.nlm.nih.gov/pubmed/25140729 http://dx.doi.org/10.1021/sb500267d |
work_keys_str_mv | AT ruffnerduanee assessingthecombinatorialpotentialoftherippcyanobactintrupathway AT schmidtericw assessingthecombinatorialpotentialoftherippcyanobactintrupathway AT heemstrajohnr assessingthecombinatorialpotentialoftherippcyanobactintrupathway |