Cargando…
Gradient-free MCMC methods for dynamic causal modelling
In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time...
Autores principales: | Sengupta, Biswa, Friston, Karl J., Penny, Will D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410946/ https://www.ncbi.nlm.nih.gov/pubmed/25776212 http://dx.doi.org/10.1016/j.neuroimage.2015.03.008 |
Ejemplares similares
-
Gradient-based MCMC samplers for dynamic causal modelling
por: Sengupta, Biswa, et al.
Publicado: (2016) -
Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating
por: Cooray, Gerald K., et al.
Publicado: (2016) -
Efficient gradient computation for dynamical models
por: Sengupta, B., et al.
Publicado: (2014) -
Dynamic causal modelling of distributed electromagnetic responses
por: Daunizeau, Jean, et al.
Publicado: (2009) -
A dynamic causal model study of neuronal population dynamics
por: Marreiros, André C., et al.
Publicado: (2010)