Cargando…

Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging

In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands conside...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Linsen, Chen-Wiegart, Yu-chen Karen, Wang, Jiajun, Gao, Peng, Ding, Qi, Yu, Young-Sang, Wang, Feng, Cabana, Jordi, Wang, Jun, Jin, Song
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411298/
https://www.ncbi.nlm.nih.gov/pubmed/25892338
http://dx.doi.org/10.1038/ncomms7883
Descripción
Sumario:In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge and charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. These mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.