Cargando…
Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks
Synaptic plasticity, the putative basis of learning and memory formation, manifests in various forms and across different timescales. Here we show that the interaction of Hebbian homosynaptic plasticity with rapid non-Hebbian heterosynaptic plasticity is, when complemented with slower homeostatic ch...
Autores principales: | Zenke, Friedemann, Agnes, Everton J., Gerstner, Wulfram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411307/ https://www.ncbi.nlm.nih.gov/pubmed/25897632 http://dx.doi.org/10.1038/ncomms7922 |
Ejemplares similares
-
Synaptic Plasticity in Neural Networks Needs Homeostasis with a Fast Rate Detector
por: Zenke, Friedemann, et al.
Publicado: (2013) -
Limits to high-speed simulations of spiking neural networks using general-purpose computers
por: Zenke, Friedemann, et al.
Publicado: (2014) -
Mesoscopic population equations for spiking neural networks with synaptic short-term plasticity
por: Schmutz, Valentin, et al.
Publicado: (2020) -
Plasticity and stability in recurrent neural networks
por: Zenke, Friedemann, et al.
Publicado: (2011) -
Hebbian plasticity requires compensatory processes on multiple timescales
por: Zenke, Friedemann, et al.
Publicado: (2017)