Cargando…

Relative Specificity: All Substrates Are Not Created Equal

A biological molecule, e.g., an enzyme, tends to interact with its many cognate substrates, targets, or partners differentially. Such a property is termed relative specificity and has been proposed to regulate important physiological functions, even though it has not been examined explicitly in most...

Descripción completa

Detalles Bibliográficos
Autor principal: Zeng, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411342/
https://www.ncbi.nlm.nih.gov/pubmed/24491634
http://dx.doi.org/10.1016/j.gpb.2014.01.001
Descripción
Sumario:A biological molecule, e.g., an enzyme, tends to interact with its many cognate substrates, targets, or partners differentially. Such a property is termed relative specificity and has been proposed to regulate important physiological functions, even though it has not been examined explicitly in most complex biochemical systems. This essay reviews several recent large-scale studies that investigate protein folding, signal transduction, RNA binding, translation and transcription in the context of relative specificity. These results and others support a pervasive role of relative specificity in diverse biological processes. It is becoming clear that relative specificity contributes fundamentally to the diversity and complexity of biological systems, which has significant implications in disease processes as well.