Cargando…

Fusional Vergence Detected by Prism Bar and Synoptophore in Chinese Childhood Intermittent Exotropia

Purpose. To measure the changes in fusional vergence in Chinese children with intermittent exotropia (IXT) and the association with the control of IXT. Methods. Ninety-two patients with IXT (8–15 years old) were compared with 86 controls. Exodeviation control was evaluated using the Revised Newcastl...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Tao, Wang, Jing, Levin, Moran, Su, Qing, Li, Dongguo, Li, Junfa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411439/
https://www.ncbi.nlm.nih.gov/pubmed/25954512
http://dx.doi.org/10.1155/2015/987048
Descripción
Sumario:Purpose. To measure the changes in fusional vergence in Chinese children with intermittent exotropia (IXT) and the association with the control of IXT. Methods. Ninety-two patients with IXT (8–15 years old) were compared with 86 controls. Exodeviation control was evaluated using the Revised Newcastle Control Score. Angle of deviation was measured using prism and alternate cover testing at distance and near. Fusional vergence was measured using prism bar and synoptophore. This study was registered with ChiCTR-RCC-13003920. Results. Using prism bar, convergence break points were lower whereas divergence break points were higher in children with IXT at distance (P < 0.001) and near (P < 0.001) compared with controls. There was no significant difference in mean divergence amplitudes between the two groups when testing using a synoptophore (P = 0.53). In children with IXT, the distance between recovery point and break point in both convergence (distance: P = 0.02; near: P = 0.02) and divergence (distance: P < 0.001; near: P < 0.001) was larger than controls when detected by prism bar and synoptophore (convergence: P = 0.005; divergence: P = 0.006). Conclusions. Children with IXT have reduced convergence amplitudes as detected by both prism bar and synoptophore.