Cargando…

Immune Function and Muscle Adaptations to Resistance exercise in Older Adults: Study Protocol for a Randomized Controlled Trial of a Nutritional Supplement

BACKGROUND: Immune function may influence the ability of older adults to maintain or improve muscle mass, strength, and function during aging. Thus, nutritional supplementation that supports the immune system could complement resistance exercise as an intervention for age-associated muscle loss. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Dennis, Richard A, Ponnappan, Usha, Kodell, Ralph L, Garner, Kimberly K, Parkes, Christopher M, Bopp, Melinda M, Padala, Kalpana P, Peterson, Charlotte A, Padala, Prasad R, Sullivan, Dennis H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411711/
https://www.ncbi.nlm.nih.gov/pubmed/25872570
http://dx.doi.org/10.1186/s13063-015-0631-3
Descripción
Sumario:BACKGROUND: Immune function may influence the ability of older adults to maintain or improve muscle mass, strength, and function during aging. Thus, nutritional supplementation that supports the immune system could complement resistance exercise as an intervention for age-associated muscle loss. The current study will determine the relationship between immune function and exercise training outcomes for older adults who consume a nutritional supplement or placebo during resistance training and post-training follow-up. The supplement was chosen due to evidence suggesting its ingredients [arginine (Arg), glutamine (Gln), and β-hydroxy β-methylbutyrate (HMB)] can improve immune function, promote muscle growth, and counteract muscle loss. METHODS/DESIGN: Veterans (age 60 to 80 yrs, N = 50) of the United States military will participate in a randomized double-blind placebo-controlled trial of consumption of a nutritional supplement or placebo during completion of three study objectives: 1) determine if 2 weeks of supplementation improve immune function measured as the response to vaccination and systemic and cellular responses to acute resistance exercise; 2) determine if supplementation during 36 sessions of resistance training boosts gains in muscle size, strength, and function; and 3) determine if continued supplementation for 26 weeks post-training promotes retention of training-induced gains in muscle size, strength, and function. Analyses of the results for these objectives will determine the relationship between immune function and the training outcomes. Participants will undergo nine blood draws and five muscle (vastus lateralis) biopsies so that the effects of the supplement on immune function and the systemic and cellular responses to exercise can be measured. DISCUSSION: Exercise has known effects on immune function. However, the study will attempt to modulate immune function using a nutritional supplement and determine the effects on training outcomes. The study will also examine post-training benefit retention, an important issue for older adults, usually omitted from exercise studies. The study will potentially advance our understanding of the mechanisms of muscle gain and loss in older adults, but more importantly, a nutritional intervention will be evaluated as a complement to exercise for supporting muscle health during aging. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT02261961, registration date 10 June 2014, recruitment active.