Cargando…

Decrease of larval and subsequent adult Anopheles sergentii populations following feeding of adult mosquitoes from Bacillus sphaericus-containing attractive sugar baits

BACKGROUND: Bacillus sphaericus is a mosquito-larvae pathogen which proliferates in the host cadavers, spreading and preserving the infection within the larval habitats for prolonged periods. In this pilot field study, we presented B. sphaericus-containing attractive sugar baits (ASB) to wild Anophe...

Descripción completa

Detalles Bibliográficos
Autores principales: Schlein, Yosef, Müller, Günter C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411724/
https://www.ncbi.nlm.nih.gov/pubmed/25899788
http://dx.doi.org/10.1186/s13071-015-0845-y
Descripción
Sumario:BACKGROUND: Bacillus sphaericus is a mosquito-larvae pathogen which proliferates in the host cadavers, spreading and preserving the infection within the larval habitats for prolonged periods. In this pilot field study, we presented B. sphaericus-containing attractive sugar baits (ASB) to wild Anopheles sergentii adults, with the assumption that bait-fed, B. sphaericus-carrying mosquitoes are able to efficiently transmit the pathogen to the larval habitats, causing larval mortality and leading to a decrease in the subsequent adult population. METHODS: The experiment was conducted over 75 days in two desert-surrounded streamlets. Blooming Ochradenus baccatus bushes were sprayed with bait solutions consisting of sugar and food dye marker solutions, with or without B. sphaericus at the experimental and control streamlets, respectively. Adult mosquito and larvae numbers were monitored before and after the treatment application, and the proportion of bait-fed adults was determined by visual inspection for dye presence. RESULTS: Presence of food dye confirmed a large fraction of the adult mosquito population (70%-75%) readily ingested Bacillus sphaericus- containing bait. By the end of the study period, the larval population at the experimental site was six-fold smaller than the concurrent larval population at the control site. The ensuing adult An. sergentii population was also reduced to about 60% at the experimental site, while the adult mosquito population at the control site had increased 2.4 fold over the same time-frame. The reduction in adult mosquito numbers became apparent after a lag time (10 days), suggesting the treatment had minimal effect on adult longevity, also indicated by the post-treatment increase in the proportion of old mosquitoes and concomitant decrease in the proportion of young mosquitoes. CONCLUSIONS: Presentation of B. sphaericus-containing ASB substantially impacts the larval population, which in turn leads to a significant reduction of the ensuing numbers of adult mosquitoes. Although such outcomes may be the result of other causes, these preliminary results raise the possibility that adult mosquitoes can efficiently transmit the pathogen into the larval habitats. The transfer of B. sphaericus via contaminated adult mosquito carriers may allow introduction of pathogens to breeding places which are dispersed, hard to find, or difficult to access.