Cargando…
Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways
BACKGROUND: Diabetes mellitus is the most common chronic endocrine disorder, affecting an estimated population of 382 million people worldwide. It is associated with microvascular and macrovascular complications, including diabetic nephropathy (DN); primary cause of end-stage renal disease. Differen...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411872/ https://www.ncbi.nlm.nih.gov/pubmed/25280384 http://dx.doi.org/10.1186/s12881-014-0103-8 |
_version_ | 1782368561744838656 |
---|---|
author | Nazir, Nyla Siddiqui, Khalid Al-Qasim, Sara Al-Naqeb, Dhekra |
author_facet | Nazir, Nyla Siddiqui, Khalid Al-Qasim, Sara Al-Naqeb, Dhekra |
author_sort | Nazir, Nyla |
collection | PubMed |
description | BACKGROUND: Diabetes mellitus is the most common chronic endocrine disorder, affecting an estimated population of 382 million people worldwide. It is associated with microvascular and macrovascular complications, including diabetic nephropathy (DN); primary cause of end-stage renal disease. Different inflammatory and angiogenic molecules in various pathways are important modulators in the pathogenesis and progression of diabetic nephropathy. Differential disease risk in DN may be partly attributable to genetic susceptibility. In this meta-analysis, we aimed to determine which of the previously investigated genetic variants in these pathways are significantly associated with the development of DN and to examine the functional role of these genes. METHODS: A systematic search was conducted to collect and analyze all studies published till June 2013; that investigated the association between genetic variants involved in inflammatory cytokines and angiogenesis and diabetic nephropathy. Genetic variants associated with DN were selected and analyzed by using Comprehensive Meta Analysis software. Pathway analysis of the genes with variants showing significant positive association with DN was performed using Genomatix Genome Analyzer (Genomatix, Munich, Germany). RESULTS: After the inclusion and exclusion criteria for this analysis, 34 studies were included in this meta-analysis. 11 genetic variants showed significant positive association with DN in a random-effects meta-analysis. These included genetic variants within or near VEGFA, CCR5, CCL2, IL-1, MMP9, EPO, IL-8, ADIPOQ and IL-10. rs1800871 (T) genetic variant in IL-10 showed protective effect for DN. Most of these eleven genetic variants were involved in GPCR signaling and receptor binding pathways whereas four were involved in chronic kidney failure. rs833061 [OR 2.08 (95% CI 1.63-2.66)] in the VEGFA gene and rs3917887 [OR 2.04 (95% CI 1.64-2.54)] in the CCL2 gene showed the most significant association with the risk of diabetic nephropathy. CONCLUSIONS: Our results indicate that 11 genetic variants within or near VEGFA, CCR5, CCL2, IL-1, MMP9, EPO, IL-8, ADIPOQ and IL-10 showed significant positive association with diabetic nephropathy. Gene Ontology or pathway analysis showed that these genes may contribute to the pathophysiology of DN. The functional relevance of the variants and their pathways can lead to increased biological insights and development of new therapeutic targets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12881-014-0103-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4411872 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-44118722015-04-29 Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways Nazir, Nyla Siddiqui, Khalid Al-Qasim, Sara Al-Naqeb, Dhekra BMC Med Genet Research Article BACKGROUND: Diabetes mellitus is the most common chronic endocrine disorder, affecting an estimated population of 382 million people worldwide. It is associated with microvascular and macrovascular complications, including diabetic nephropathy (DN); primary cause of end-stage renal disease. Different inflammatory and angiogenic molecules in various pathways are important modulators in the pathogenesis and progression of diabetic nephropathy. Differential disease risk in DN may be partly attributable to genetic susceptibility. In this meta-analysis, we aimed to determine which of the previously investigated genetic variants in these pathways are significantly associated with the development of DN and to examine the functional role of these genes. METHODS: A systematic search was conducted to collect and analyze all studies published till June 2013; that investigated the association between genetic variants involved in inflammatory cytokines and angiogenesis and diabetic nephropathy. Genetic variants associated with DN were selected and analyzed by using Comprehensive Meta Analysis software. Pathway analysis of the genes with variants showing significant positive association with DN was performed using Genomatix Genome Analyzer (Genomatix, Munich, Germany). RESULTS: After the inclusion and exclusion criteria for this analysis, 34 studies were included in this meta-analysis. 11 genetic variants showed significant positive association with DN in a random-effects meta-analysis. These included genetic variants within or near VEGFA, CCR5, CCL2, IL-1, MMP9, EPO, IL-8, ADIPOQ and IL-10. rs1800871 (T) genetic variant in IL-10 showed protective effect for DN. Most of these eleven genetic variants were involved in GPCR signaling and receptor binding pathways whereas four were involved in chronic kidney failure. rs833061 [OR 2.08 (95% CI 1.63-2.66)] in the VEGFA gene and rs3917887 [OR 2.04 (95% CI 1.64-2.54)] in the CCL2 gene showed the most significant association with the risk of diabetic nephropathy. CONCLUSIONS: Our results indicate that 11 genetic variants within or near VEGFA, CCR5, CCL2, IL-1, MMP9, EPO, IL-8, ADIPOQ and IL-10 showed significant positive association with diabetic nephropathy. Gene Ontology or pathway analysis showed that these genes may contribute to the pathophysiology of DN. The functional relevance of the variants and their pathways can lead to increased biological insights and development of new therapeutic targets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12881-014-0103-8) contains supplementary material, which is available to authorized users. BioMed Central 2014-10-04 /pmc/articles/PMC4411872/ /pubmed/25280384 http://dx.doi.org/10.1186/s12881-014-0103-8 Text en © Nazir et al.; licensee BioMed Central Ltd. 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Nazir, Nyla Siddiqui, Khalid Al-Qasim, Sara Al-Naqeb, Dhekra Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways |
title | Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways |
title_full | Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways |
title_fullStr | Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways |
title_full_unstemmed | Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways |
title_short | Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways |
title_sort | meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411872/ https://www.ncbi.nlm.nih.gov/pubmed/25280384 http://dx.doi.org/10.1186/s12881-014-0103-8 |
work_keys_str_mv | AT nazirnyla metaanalysisofdiabeticnephropathyassociatedgeneticvariantsininflammationandangiogenesisinvolvedindifferentbiochemicalpathways AT siddiquikhalid metaanalysisofdiabeticnephropathyassociatedgeneticvariantsininflammationandangiogenesisinvolvedindifferentbiochemicalpathways AT alqasimsara metaanalysisofdiabeticnephropathyassociatedgeneticvariantsininflammationandangiogenesisinvolvedindifferentbiochemicalpathways AT alnaqebdhekra metaanalysisofdiabeticnephropathyassociatedgeneticvariantsininflammationandangiogenesisinvolvedindifferentbiochemicalpathways |