Cargando…
Protective Effects of Myricetin on Acute Hypoxia-Induced Exercise Intolerance and Mitochondrial Impairments in Rats
PURPOSE: Exercise tolerance is impaired in hypoxia. The aim of this study was to evaluate the effects of myricetin, a dietary flavonoid compound widely found in fruits and vegetables, on acute hypoxia-induced exercise intolerance in vivo and in vitro. METHODS: Male rats were administered myricetin o...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412664/ https://www.ncbi.nlm.nih.gov/pubmed/25919288 http://dx.doi.org/10.1371/journal.pone.0124727 |
_version_ | 1782368701955178496 |
---|---|
author | Zou, Dan Liu, Peng Chen, Ka Xie, Qi Liang, Xinyu Bai, Qian Zhou, Qicheng Liu, Kai Zhang, Ting Zhu, Jundong Mi, Mantian |
author_facet | Zou, Dan Liu, Peng Chen, Ka Xie, Qi Liang, Xinyu Bai, Qian Zhou, Qicheng Liu, Kai Zhang, Ting Zhu, Jundong Mi, Mantian |
author_sort | Zou, Dan |
collection | PubMed |
description | PURPOSE: Exercise tolerance is impaired in hypoxia. The aim of this study was to evaluate the effects of myricetin, a dietary flavonoid compound widely found in fruits and vegetables, on acute hypoxia-induced exercise intolerance in vivo and in vitro. METHODS: Male rats were administered myricetin or vehicle for 7 days and subsequently spent 24 hours at a barometric pressure equivalent to 5000 m. Exercise capacity was then assessed through the run-to-fatigue procedure, and mitochondrial morphology in skeletal muscle cells was observed by transmission electron microscopy (TEM). The enzymatic activities of electron transfer complexes were analyzed using an enzyme-linked immuno-sorbent assay (ELISA). mtDNA was quantified by real-time-PCR. Mitochondrial membrane potential was measured by JC-1 staining. Protein expression was detected through western blotting, immunohistochemistry, and immunofluorescence. RESULTS: Myricetin supplementation significantly prevented the decline of run-to-fatigue time of rats in hypoxia, and attenuated acute hypoxia-induced mitochondrial impairment in skeletal muscle cells in vivo and in vitro by maintaining mitochondrial structure, mtDNA content, mitochondrial membrane potential, and activities of the respiratory chain complexes. Further studies showed that myricetin maintained mitochondrial biogenesis in skeletal muscle cells under hypoxic conditions by up-regulating the expressions of mitochondrial biogenesis-related regluators, in addition, AMP-activated protein kinase(AMPK) plays a crucial role in this process. CONCLUSIONS: Myricetin may have important applications for improving physical performance under hypoxic environment, which may be attributed to the protective effect against mitochondrial impairment by maintaining mitochondrial biogenesis. |
format | Online Article Text |
id | pubmed-4412664 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44126642015-05-12 Protective Effects of Myricetin on Acute Hypoxia-Induced Exercise Intolerance and Mitochondrial Impairments in Rats Zou, Dan Liu, Peng Chen, Ka Xie, Qi Liang, Xinyu Bai, Qian Zhou, Qicheng Liu, Kai Zhang, Ting Zhu, Jundong Mi, Mantian PLoS One Research Article PURPOSE: Exercise tolerance is impaired in hypoxia. The aim of this study was to evaluate the effects of myricetin, a dietary flavonoid compound widely found in fruits and vegetables, on acute hypoxia-induced exercise intolerance in vivo and in vitro. METHODS: Male rats were administered myricetin or vehicle for 7 days and subsequently spent 24 hours at a barometric pressure equivalent to 5000 m. Exercise capacity was then assessed through the run-to-fatigue procedure, and mitochondrial morphology in skeletal muscle cells was observed by transmission electron microscopy (TEM). The enzymatic activities of electron transfer complexes were analyzed using an enzyme-linked immuno-sorbent assay (ELISA). mtDNA was quantified by real-time-PCR. Mitochondrial membrane potential was measured by JC-1 staining. Protein expression was detected through western blotting, immunohistochemistry, and immunofluorescence. RESULTS: Myricetin supplementation significantly prevented the decline of run-to-fatigue time of rats in hypoxia, and attenuated acute hypoxia-induced mitochondrial impairment in skeletal muscle cells in vivo and in vitro by maintaining mitochondrial structure, mtDNA content, mitochondrial membrane potential, and activities of the respiratory chain complexes. Further studies showed that myricetin maintained mitochondrial biogenesis in skeletal muscle cells under hypoxic conditions by up-regulating the expressions of mitochondrial biogenesis-related regluators, in addition, AMP-activated protein kinase(AMPK) plays a crucial role in this process. CONCLUSIONS: Myricetin may have important applications for improving physical performance under hypoxic environment, which may be attributed to the protective effect against mitochondrial impairment by maintaining mitochondrial biogenesis. Public Library of Science 2015-04-28 /pmc/articles/PMC4412664/ /pubmed/25919288 http://dx.doi.org/10.1371/journal.pone.0124727 Text en © 2015 Zou et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zou, Dan Liu, Peng Chen, Ka Xie, Qi Liang, Xinyu Bai, Qian Zhou, Qicheng Liu, Kai Zhang, Ting Zhu, Jundong Mi, Mantian Protective Effects of Myricetin on Acute Hypoxia-Induced Exercise Intolerance and Mitochondrial Impairments in Rats |
title | Protective Effects of Myricetin on Acute Hypoxia-Induced Exercise Intolerance and Mitochondrial Impairments in Rats |
title_full | Protective Effects of Myricetin on Acute Hypoxia-Induced Exercise Intolerance and Mitochondrial Impairments in Rats |
title_fullStr | Protective Effects of Myricetin on Acute Hypoxia-Induced Exercise Intolerance and Mitochondrial Impairments in Rats |
title_full_unstemmed | Protective Effects of Myricetin on Acute Hypoxia-Induced Exercise Intolerance and Mitochondrial Impairments in Rats |
title_short | Protective Effects of Myricetin on Acute Hypoxia-Induced Exercise Intolerance and Mitochondrial Impairments in Rats |
title_sort | protective effects of myricetin on acute hypoxia-induced exercise intolerance and mitochondrial impairments in rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412664/ https://www.ncbi.nlm.nih.gov/pubmed/25919288 http://dx.doi.org/10.1371/journal.pone.0124727 |
work_keys_str_mv | AT zoudan protectiveeffectsofmyricetinonacutehypoxiainducedexerciseintoleranceandmitochondrialimpairmentsinrats AT liupeng protectiveeffectsofmyricetinonacutehypoxiainducedexerciseintoleranceandmitochondrialimpairmentsinrats AT chenka protectiveeffectsofmyricetinonacutehypoxiainducedexerciseintoleranceandmitochondrialimpairmentsinrats AT xieqi protectiveeffectsofmyricetinonacutehypoxiainducedexerciseintoleranceandmitochondrialimpairmentsinrats AT liangxinyu protectiveeffectsofmyricetinonacutehypoxiainducedexerciseintoleranceandmitochondrialimpairmentsinrats AT baiqian protectiveeffectsofmyricetinonacutehypoxiainducedexerciseintoleranceandmitochondrialimpairmentsinrats AT zhouqicheng protectiveeffectsofmyricetinonacutehypoxiainducedexerciseintoleranceandmitochondrialimpairmentsinrats AT liukai protectiveeffectsofmyricetinonacutehypoxiainducedexerciseintoleranceandmitochondrialimpairmentsinrats AT zhangting protectiveeffectsofmyricetinonacutehypoxiainducedexerciseintoleranceandmitochondrialimpairmentsinrats AT zhujundong protectiveeffectsofmyricetinonacutehypoxiainducedexerciseintoleranceandmitochondrialimpairmentsinrats AT mimantian protectiveeffectsofmyricetinonacutehypoxiainducedexerciseintoleranceandmitochondrialimpairmentsinrats |