Cargando…

Research of Amoxicillin Microcapsules Preparation Playing Micro-Jetting Technology

With polylactic-co-glycolic acid(PLGA) as shell material of microcapsule, amoxicillin as the model, poly(vinyl alcohol) and twain as surfactant, amoxicillin-PLGA microcapsules were manufactured using digital micro-jetting technology and a glass nozzle of 40μm diameter. The influences of the paramete...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Huaiyuan, Gu, Qingqing, Liao, Yuehua, Sun, Chenjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Open 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412956/
https://www.ncbi.nlm.nih.gov/pubmed/25937851
http://dx.doi.org/10.2174/1874120701509010115
Descripción
Sumario:With polylactic-co-glycolic acid(PLGA) as shell material of microcapsule, amoxicillin as the model, poly(vinyl alcohol) and twain as surfactant, amoxicillin-PLGA microcapsules were manufactured using digital micro-jetting technology and a glass nozzle of 40μm diameter. The influences of the parameters of micro-jetting system on the mean grain size and size distribution of amoxicillin-PLGA microcapsules were studied with single factor analysis and orthogonal experiment method, namely, PLGA solution concentration, driving voltage, jetting frequency, stirrer speed, etc. The optimal result was obtained; the form representation of microcapsule was analyzed as well. The results show that, under certain conditions of experimental drug prescription, driving voltage was proportional to the particle size; jetting frequency and stirrer speed were inversely proportional. When the PLGA concentration for 3%, driving voltage for 80V, the jetting frequency for 10000Hz and the stirrer speed for 750rpm, the particles were in an ideal state with the mean grain size of 60.246μm, the encapsulation efficiency reached 62.39% and 2.1% for drug loading.