Cargando…
Fatty acid carbon is essential for dNTP synthesis in endothelial cells
The metabolism of endothelial cells (ECs) during vessel sprouting remains poorly studied. Here, we report that endothelial loss of CPT1a, a rate-limiting enzyme of fatty acid oxidation (FAO), caused vascular sprouting defects due to impaired proliferation, not migration of ECs. Reduction of FAO in E...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413024/ https://www.ncbi.nlm.nih.gov/pubmed/25830893 http://dx.doi.org/10.1038/nature14362 |
_version_ | 1782368745449062400 |
---|---|
author | Schoors, Sandra Bruning, Ulrike Missiaen, Rindert Queiroz, Karla CS Borgers, Gitte Elia, Ilaria Zecchin, Annalisa Cantelmo, Anna Rita Christen, Stefan Goveia, Jermaine Heggermont, Ward Goddé, Lucica Vinckier, Stefan Van Veldhoven, Paul P. Eelen, Guy Schoonjans, Luc Gerhardt, Holger Dewerchin, Mieke Baes, Myriam De Bock, Katrien Ghesquière, Bart Lunt, Sophia Y. Fendt, Sarah-Maria Carmeliet, Peter |
author_facet | Schoors, Sandra Bruning, Ulrike Missiaen, Rindert Queiroz, Karla CS Borgers, Gitte Elia, Ilaria Zecchin, Annalisa Cantelmo, Anna Rita Christen, Stefan Goveia, Jermaine Heggermont, Ward Goddé, Lucica Vinckier, Stefan Van Veldhoven, Paul P. Eelen, Guy Schoonjans, Luc Gerhardt, Holger Dewerchin, Mieke Baes, Myriam De Bock, Katrien Ghesquière, Bart Lunt, Sophia Y. Fendt, Sarah-Maria Carmeliet, Peter |
author_sort | Schoors, Sandra |
collection | PubMed |
description | The metabolism of endothelial cells (ECs) during vessel sprouting remains poorly studied. Here, we report that endothelial loss of CPT1a, a rate-limiting enzyme of fatty acid oxidation (FAO), caused vascular sprouting defects due to impaired proliferation, not migration of ECs. Reduction of FAO in ECs did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labeling studies in control ECs showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1a silencing reduced these processes and depleted EC stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1a-silenced ECs. Finally, CPT1 blockade inhibited pathological ocular angiogenesis, suggesting a novel strategy for blocking angiogenesis. |
format | Online Article Text |
id | pubmed-4413024 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
record_format | MEDLINE/PubMed |
spelling | pubmed-44130242015-10-09 Fatty acid carbon is essential for dNTP synthesis in endothelial cells Schoors, Sandra Bruning, Ulrike Missiaen, Rindert Queiroz, Karla CS Borgers, Gitte Elia, Ilaria Zecchin, Annalisa Cantelmo, Anna Rita Christen, Stefan Goveia, Jermaine Heggermont, Ward Goddé, Lucica Vinckier, Stefan Van Veldhoven, Paul P. Eelen, Guy Schoonjans, Luc Gerhardt, Holger Dewerchin, Mieke Baes, Myriam De Bock, Katrien Ghesquière, Bart Lunt, Sophia Y. Fendt, Sarah-Maria Carmeliet, Peter Nature Article The metabolism of endothelial cells (ECs) during vessel sprouting remains poorly studied. Here, we report that endothelial loss of CPT1a, a rate-limiting enzyme of fatty acid oxidation (FAO), caused vascular sprouting defects due to impaired proliferation, not migration of ECs. Reduction of FAO in ECs did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labeling studies in control ECs showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1a silencing reduced these processes and depleted EC stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1a-silenced ECs. Finally, CPT1 blockade inhibited pathological ocular angiogenesis, suggesting a novel strategy for blocking angiogenesis. 2015-04-01 2015-04-09 /pmc/articles/PMC4413024/ /pubmed/25830893 http://dx.doi.org/10.1038/nature14362 Text en Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) . Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Schoors, Sandra Bruning, Ulrike Missiaen, Rindert Queiroz, Karla CS Borgers, Gitte Elia, Ilaria Zecchin, Annalisa Cantelmo, Anna Rita Christen, Stefan Goveia, Jermaine Heggermont, Ward Goddé, Lucica Vinckier, Stefan Van Veldhoven, Paul P. Eelen, Guy Schoonjans, Luc Gerhardt, Holger Dewerchin, Mieke Baes, Myriam De Bock, Katrien Ghesquière, Bart Lunt, Sophia Y. Fendt, Sarah-Maria Carmeliet, Peter Fatty acid carbon is essential for dNTP synthesis in endothelial cells |
title | Fatty acid carbon is essential for dNTP synthesis in endothelial cells |
title_full | Fatty acid carbon is essential for dNTP synthesis in endothelial cells |
title_fullStr | Fatty acid carbon is essential for dNTP synthesis in endothelial cells |
title_full_unstemmed | Fatty acid carbon is essential for dNTP synthesis in endothelial cells |
title_short | Fatty acid carbon is essential for dNTP synthesis in endothelial cells |
title_sort | fatty acid carbon is essential for dntp synthesis in endothelial cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413024/ https://www.ncbi.nlm.nih.gov/pubmed/25830893 http://dx.doi.org/10.1038/nature14362 |
work_keys_str_mv | AT schoorssandra fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT bruningulrike fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT missiaenrindert fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT queirozkarlacs fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT borgersgitte fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT eliailaria fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT zecchinannalisa fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT cantelmoannarita fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT christenstefan fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT goveiajermaine fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT heggermontward fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT goddelucica fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT vinckierstefan fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT vanveldhovenpaulp fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT eelenguy fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT schoonjansluc fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT gerhardtholger fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT dewerchinmieke fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT baesmyriam fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT debockkatrien fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT ghesquierebart fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT luntsophiay fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT fendtsarahmaria fattyacidcarbonisessentialfordntpsynthesisinendothelialcells AT carmelietpeter fattyacidcarbonisessentialfordntpsynthesisinendothelialcells |