Cargando…

Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons

The ability of the brain to rapidly process information from multiple pathways is critical for reliable execution of complex sensory-motor behaviors, yet the cellular mechanisms underlying a neuronal representation of multimodal stimuli are poorly understood. Here we explored the possibility that th...

Descripción completa

Detalles Bibliográficos
Autores principales: Chabrol, François P., Arenz, Alexander, Wiechert, Martin T., Margrie, Troy W., DiGregorio, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413433/
https://www.ncbi.nlm.nih.gov/pubmed/25821914
http://dx.doi.org/10.1038/nn.3974
_version_ 1782368781344964608
author Chabrol, François P.
Arenz, Alexander
Wiechert, Martin T.
Margrie, Troy W.
DiGregorio, David A.
author_facet Chabrol, François P.
Arenz, Alexander
Wiechert, Martin T.
Margrie, Troy W.
DiGregorio, David A.
author_sort Chabrol, François P.
collection PubMed
description The ability of the brain to rapidly process information from multiple pathways is critical for reliable execution of complex sensory-motor behaviors, yet the cellular mechanisms underlying a neuronal representation of multimodal stimuli are poorly understood. Here we explored the possibility that the physiological diversity of mossy fiber (MF) to granule cell (GC) synapses within the mouse vestibulocerebellum may contribute to the processing of coincident multisensory information at the level of individual GCs. We found that the strength and short-term dynamics of individual MF-GC synapses can act as biophysical signatures for primary vestibular, secondary vestibular and visual input pathways. The majority of GCs receive inputs from different modalities, which when co-activated, produced enhanced GC firing rates and distinct first spike latencies. Thus, pathway-specific synaptic response properties permit temporal coding of correlated multisensory input by single GCs, thereby enriching sensory representation and facilitating pattern separation.
format Online
Article
Text
id pubmed-4413433
institution National Center for Biotechnology Information
language English
publishDate 2015
record_format MEDLINE/PubMed
spelling pubmed-44134332015-11-01 Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons Chabrol, François P. Arenz, Alexander Wiechert, Martin T. Margrie, Troy W. DiGregorio, David A. Nat Neurosci Article The ability of the brain to rapidly process information from multiple pathways is critical for reliable execution of complex sensory-motor behaviors, yet the cellular mechanisms underlying a neuronal representation of multimodal stimuli are poorly understood. Here we explored the possibility that the physiological diversity of mossy fiber (MF) to granule cell (GC) synapses within the mouse vestibulocerebellum may contribute to the processing of coincident multisensory information at the level of individual GCs. We found that the strength and short-term dynamics of individual MF-GC synapses can act as biophysical signatures for primary vestibular, secondary vestibular and visual input pathways. The majority of GCs receive inputs from different modalities, which when co-activated, produced enhanced GC firing rates and distinct first spike latencies. Thus, pathway-specific synaptic response properties permit temporal coding of correlated multisensory input by single GCs, thereby enriching sensory representation and facilitating pattern separation. 2015-03-30 2015-05 /pmc/articles/PMC4413433/ /pubmed/25821914 http://dx.doi.org/10.1038/nn.3974 Text en Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) . Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Chabrol, François P.
Arenz, Alexander
Wiechert, Martin T.
Margrie, Troy W.
DiGregorio, David A.
Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons
title Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons
title_full Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons
title_fullStr Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons
title_full_unstemmed Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons
title_short Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons
title_sort synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413433/
https://www.ncbi.nlm.nih.gov/pubmed/25821914
http://dx.doi.org/10.1038/nn.3974
work_keys_str_mv AT chabrolfrancoisp synapticdiversityenablestemporalcodingofcoincidentmultisensoryinputsinsingleneurons
AT arenzalexander synapticdiversityenablestemporalcodingofcoincidentmultisensoryinputsinsingleneurons
AT wiechertmartint synapticdiversityenablestemporalcodingofcoincidentmultisensoryinputsinsingleneurons
AT margrietroyw synapticdiversityenablestemporalcodingofcoincidentmultisensoryinputsinsingleneurons
AT digregoriodavida synapticdiversityenablestemporalcodingofcoincidentmultisensoryinputsinsingleneurons