Cargando…

NAD(P)H-Independent Asymmetric C=C Bond Reduction Catalyzed by Ene Reductases by Using Artificial Co-substrates as the Hydrogen Donor

To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the opti...

Descripción completa

Detalles Bibliográficos
Autores principales: Winkler, Christoph K, Clay, Dorina, Entner, Marcello, Plank, Markus, Faber, Kurt
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413776/
https://www.ncbi.nlm.nih.gov/pubmed/24382795
http://dx.doi.org/10.1002/chem.201303897
Descripción
Sumario:To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the optimized conditions) resulted in conversions and enantioselectivities comparable with, or even superior to, those obtained with traditional two-enzyme nicotinamide adenine dinucleotide phosphate (NAD(P)H)-recycling systems.