Cargando…
Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods
PURPOSE: The aim of this study was to appraise the some mechanical properties of polymethyl methacrylate based denture base resin polymerized by copolymerization mechanism, and to investigate the cytotoxic effect of these copolymer resins. MATERIALS AND METHODS: 2-hydroxyethyl methacrylate (HEMA) an...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Academy of Prosthodontics
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414953/ https://www.ncbi.nlm.nih.gov/pubmed/25932307 http://dx.doi.org/10.4047/jap.2015.7.2.98 |
_version_ | 1782369003807703040 |
---|---|
author | Sahin, Onur Ozdemir, Ali Kemal Turgut, Mehmet Boztug, Ali Sumer, Zeynep |
author_facet | Sahin, Onur Ozdemir, Ali Kemal Turgut, Mehmet Boztug, Ali Sumer, Zeynep |
author_sort | Sahin, Onur |
collection | PubMed |
description | PURPOSE: The aim of this study was to appraise the some mechanical properties of polymethyl methacrylate based denture base resin polymerized by copolymerization mechanism, and to investigate the cytotoxic effect of these copolymer resins. MATERIALS AND METHODS: 2-hydroxyethyl methacrylate (HEMA) and isobutyl methacrylate (IBMA) were added to monomers of conventional heat polymerized and injection-molded poly methyl methacrylate (PMMA) resin contents of 2%, 3%, and 5% by volume and polymerization was carried out. Three-point bending test was performed to detect flexural strength and the elasticity modulus of the resins. To determine the statistical differences between the study groups, the Kruskall-Wallis test was performed. Then pairwise comparisons were performed between significant groups by Mann-Whitney U test. Agar-overlay test was performed to determine cytotoxic effect of copolymer resins. Chemical analysis was determined by FTIR spectrum. RESULTS: Synthesis of the copolymer was approved by FTIR spectroscopy. Within the conventional heat-polymerized group maximum transverse strength had been seen in the HEMA 2% concentration; however, when the concentration ratio increased, the strength decreased. In the injection-molded group, maximum transverse strength had been seen in the IBMA 2% concentration; also as the concentration ratio increased, the strength decreased. Only IBMA showed no cytotoxic effect at low concentrations when both two polymerization methods applied while HEMA showed cytotoxic effect in the injection-molded resins. CONCLUSION: Within the limitations of this study, it may be concluded that IBMA and HEMA may be used in low concentration and at high temperature to obtain non-cytotoxic and durable copolymer structure. |
format | Online Article Text |
id | pubmed-4414953 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | The Korean Academy of Prosthodontics |
record_format | MEDLINE/PubMed |
spelling | pubmed-44149532015-04-30 Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods Sahin, Onur Ozdemir, Ali Kemal Turgut, Mehmet Boztug, Ali Sumer, Zeynep J Adv Prosthodont Original Article PURPOSE: The aim of this study was to appraise the some mechanical properties of polymethyl methacrylate based denture base resin polymerized by copolymerization mechanism, and to investigate the cytotoxic effect of these copolymer resins. MATERIALS AND METHODS: 2-hydroxyethyl methacrylate (HEMA) and isobutyl methacrylate (IBMA) were added to monomers of conventional heat polymerized and injection-molded poly methyl methacrylate (PMMA) resin contents of 2%, 3%, and 5% by volume and polymerization was carried out. Three-point bending test was performed to detect flexural strength and the elasticity modulus of the resins. To determine the statistical differences between the study groups, the Kruskall-Wallis test was performed. Then pairwise comparisons were performed between significant groups by Mann-Whitney U test. Agar-overlay test was performed to determine cytotoxic effect of copolymer resins. Chemical analysis was determined by FTIR spectrum. RESULTS: Synthesis of the copolymer was approved by FTIR spectroscopy. Within the conventional heat-polymerized group maximum transverse strength had been seen in the HEMA 2% concentration; however, when the concentration ratio increased, the strength decreased. In the injection-molded group, maximum transverse strength had been seen in the IBMA 2% concentration; also as the concentration ratio increased, the strength decreased. Only IBMA showed no cytotoxic effect at low concentrations when both two polymerization methods applied while HEMA showed cytotoxic effect in the injection-molded resins. CONCLUSION: Within the limitations of this study, it may be concluded that IBMA and HEMA may be used in low concentration and at high temperature to obtain non-cytotoxic and durable copolymer structure. The Korean Academy of Prosthodontics 2015-04 2015-04-23 /pmc/articles/PMC4414953/ /pubmed/25932307 http://dx.doi.org/10.4047/jap.2015.7.2.98 Text en © 2015 The Korean Academy of Prosthodontics http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Sahin, Onur Ozdemir, Ali Kemal Turgut, Mehmet Boztug, Ali Sumer, Zeynep Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods |
title | Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods |
title_full | Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods |
title_fullStr | Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods |
title_full_unstemmed | Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods |
title_short | Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods |
title_sort | investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414953/ https://www.ncbi.nlm.nih.gov/pubmed/25932307 http://dx.doi.org/10.4047/jap.2015.7.2.98 |
work_keys_str_mv | AT sahinonur investigationofflexuralstrengthandcytotoxicityofacrylicresincopolymersbyusingdifferentpolymerizationmethods AT ozdemiralikemal investigationofflexuralstrengthandcytotoxicityofacrylicresincopolymersbyusingdifferentpolymerizationmethods AT turgutmehmet investigationofflexuralstrengthandcytotoxicityofacrylicresincopolymersbyusingdifferentpolymerizationmethods AT boztugali investigationofflexuralstrengthandcytotoxicityofacrylicresincopolymersbyusingdifferentpolymerizationmethods AT sumerzeynep investigationofflexuralstrengthandcytotoxicityofacrylicresincopolymersbyusingdifferentpolymerizationmethods |