Cargando…

Molecular characterization and application of a novel cytoplasmic male sterility-associated mitochondrial sequence in rice

BACKGROUND: Cytoplasmic male sterility (CMS) is a maternally inherited inability to produce functional pollen found in numerous flowering plant species. CMS is associated with mitochondrial DNA mutation, novel chimeric open reading frames (ORFs), and rearrangement of coding and noncoding regions of...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Yanping, Xu, Xin, Wang, Chuntai, Cheng, Gang, Li, Shaoqing, Liu, Xuequn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415283/
https://www.ncbi.nlm.nih.gov/pubmed/25926037
http://dx.doi.org/10.1186/s12863-015-0205-0
Descripción
Sumario:BACKGROUND: Cytoplasmic male sterility (CMS) is a maternally inherited inability to produce functional pollen found in numerous flowering plant species. CMS is associated with mitochondrial DNA mutation, novel chimeric open reading frames (ORFs), and rearrangement of coding and noncoding regions of the mitochondrial genome. RESULTS: BLAST (Basic Local Alignment Search Tool) analysis indicated that L-sp1, a new sequence-characterized amplified region, is non-homologous to atp6-orfH79 (or atp6-orf79) and WA352 cloned CMS-associated genes. L-sp1 was found in 11 of 102 wild rice accessions belonging to four AA genome species: Oryza rufipogon, Oryza nivara, Oryza glumaepatula, and Oryza meridionalis. Using L-sp1, two new CMS lines were developed, from either low natural fertility plants or sterile plants, by backcrossing BC(1)F(1) with Yuetai B. Northern blot and RT-PCR revealed that L-sp1 was only expressed in the anthers of w1/YTB, w2/YTB, w1/YTB//YTB, and w2/YTB//YTB when in the same cytoplasm background. CONCLUSIONS: L-sp1 is a single-copy chimeric CMS-associated gene found in the mitochondrial genome. It can be expressed in anthers with the same specific cytoplasm background, and will be a useful molecular marker for the development and marker-assisted selection of new CMS lines. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-015-0205-0) contains supplementary material, which is available to authorized users.