Cargando…

Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27

BACKGROUND: Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. METHODS: In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate...

Descripción completa

Detalles Bibliográficos
Autores principales: Chhabra, Meenu, Mishra, Saroj, Sreekrishnan, Trichur Ramaswamy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415393/
https://www.ncbi.nlm.nih.gov/pubmed/25932329
http://dx.doi.org/10.1186/s40201-015-0192-0
Descripción
Sumario:BACKGROUND: Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. METHODS: In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. RESULTS: The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10–20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. CONCLUSIONS: The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.