Cargando…
The effect of triamcinolone acetonide on laser-induced choroidal neovascularization in mice using a hypoxia visualization bio-imaging probe
Hypoxic stress is a risk factor of ocular neovascularization. Hypoxia visualization may provide clues regarding the underlying cause of angiogenesis. Recently, we developed a hypoxia-specific probe, protein transduction domain-oxygen-dependent degradation domain-HaloTag-Rhodamine (POH-Rhodamine). In...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415651/ https://www.ncbi.nlm.nih.gov/pubmed/25927172 http://dx.doi.org/10.1038/srep09898 |
_version_ | 1782369104974315520 |
---|---|
author | Takata, Shinsuke Masuda, Tomomi Nakamura, Shinsuke Kuchimaru, Takahiro Tsuruma, Kazuhiro Shimazawa, Masamitsu Nagasawa, Hideko kizaka-Kondoh, Shinae Hara, Hideaki |
author_facet | Takata, Shinsuke Masuda, Tomomi Nakamura, Shinsuke Kuchimaru, Takahiro Tsuruma, Kazuhiro Shimazawa, Masamitsu Nagasawa, Hideko kizaka-Kondoh, Shinae Hara, Hideaki |
author_sort | Takata, Shinsuke |
collection | PubMed |
description | Hypoxic stress is a risk factor of ocular neovascularization. Hypoxia visualization may provide clues regarding the underlying cause of angiogenesis. Recently, we developed a hypoxia-specific probe, protein transduction domain-oxygen-dependent degradation domain-HaloTag-Rhodamine (POH-Rhodamine). In this study, we observed the localization of HIF-1α proteins by immunohistochemistry and the fluorescence of POH-Rhodamine on RPE-choroid flat mounts. Moreover, we compared the localization of POH-Rhodamine with pimonidazole which is a standard reagent for detecting hypoxia. Next, we investigated the effects of triamcinolone acetonide (TAAC) against visual function that was evaluated by recording electroretinogram (ERG) and choroidal neovascularization (CNV) development. Mice were given laser-induced CNV using a diode laser and treated with intravitreal injection of TAAC. Finally, we investigated POH-Rhodamine on CNV treated with TAAC. In this study, the fluorescence of POH-Rhodamine and HIF-1α were co-localized in laser-irradiated sites, and both the POH-Rhodamine and pimonidazole fluorescent areas were almost the same. Intravitreal injection of TAAC restored the reduced ERG b-wave but not the a-wave and decreased the mean CNV area. Furthermore, the area of the POH-Rhodamine-positive cells decreased. These findings indicate that POH-Rhodamine is useful for evaluating tissue hypoxia in a laser-induced CNV model, suggesting that TAAC suppressed CNV through tissue hypoxia improvement. |
format | Online Article Text |
id | pubmed-4415651 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-44156512015-05-12 The effect of triamcinolone acetonide on laser-induced choroidal neovascularization in mice using a hypoxia visualization bio-imaging probe Takata, Shinsuke Masuda, Tomomi Nakamura, Shinsuke Kuchimaru, Takahiro Tsuruma, Kazuhiro Shimazawa, Masamitsu Nagasawa, Hideko kizaka-Kondoh, Shinae Hara, Hideaki Sci Rep Article Hypoxic stress is a risk factor of ocular neovascularization. Hypoxia visualization may provide clues regarding the underlying cause of angiogenesis. Recently, we developed a hypoxia-specific probe, protein transduction domain-oxygen-dependent degradation domain-HaloTag-Rhodamine (POH-Rhodamine). In this study, we observed the localization of HIF-1α proteins by immunohistochemistry and the fluorescence of POH-Rhodamine on RPE-choroid flat mounts. Moreover, we compared the localization of POH-Rhodamine with pimonidazole which is a standard reagent for detecting hypoxia. Next, we investigated the effects of triamcinolone acetonide (TAAC) against visual function that was evaluated by recording electroretinogram (ERG) and choroidal neovascularization (CNV) development. Mice were given laser-induced CNV using a diode laser and treated with intravitreal injection of TAAC. Finally, we investigated POH-Rhodamine on CNV treated with TAAC. In this study, the fluorescence of POH-Rhodamine and HIF-1α were co-localized in laser-irradiated sites, and both the POH-Rhodamine and pimonidazole fluorescent areas were almost the same. Intravitreal injection of TAAC restored the reduced ERG b-wave but not the a-wave and decreased the mean CNV area. Furthermore, the area of the POH-Rhodamine-positive cells decreased. These findings indicate that POH-Rhodamine is useful for evaluating tissue hypoxia in a laser-induced CNV model, suggesting that TAAC suppressed CNV through tissue hypoxia improvement. Nature Publishing Group 2015-04-30 /pmc/articles/PMC4415651/ /pubmed/25927172 http://dx.doi.org/10.1038/srep09898 Text en Copyright © 2015, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Takata, Shinsuke Masuda, Tomomi Nakamura, Shinsuke Kuchimaru, Takahiro Tsuruma, Kazuhiro Shimazawa, Masamitsu Nagasawa, Hideko kizaka-Kondoh, Shinae Hara, Hideaki The effect of triamcinolone acetonide on laser-induced choroidal neovascularization in mice using a hypoxia visualization bio-imaging probe |
title | The effect of triamcinolone acetonide on laser-induced choroidal neovascularization in mice using a hypoxia visualization bio-imaging probe |
title_full | The effect of triamcinolone acetonide on laser-induced choroidal neovascularization in mice using a hypoxia visualization bio-imaging probe |
title_fullStr | The effect of triamcinolone acetonide on laser-induced choroidal neovascularization in mice using a hypoxia visualization bio-imaging probe |
title_full_unstemmed | The effect of triamcinolone acetonide on laser-induced choroidal neovascularization in mice using a hypoxia visualization bio-imaging probe |
title_short | The effect of triamcinolone acetonide on laser-induced choroidal neovascularization in mice using a hypoxia visualization bio-imaging probe |
title_sort | effect of triamcinolone acetonide on laser-induced choroidal neovascularization in mice using a hypoxia visualization bio-imaging probe |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415651/ https://www.ncbi.nlm.nih.gov/pubmed/25927172 http://dx.doi.org/10.1038/srep09898 |
work_keys_str_mv | AT takatashinsuke theeffectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT masudatomomi theeffectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT nakamurashinsuke theeffectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT kuchimarutakahiro theeffectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT tsurumakazuhiro theeffectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT shimazawamasamitsu theeffectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT nagasawahideko theeffectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT kizakakondohshinae theeffectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT harahideaki theeffectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT takatashinsuke effectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT masudatomomi effectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT nakamurashinsuke effectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT kuchimarutakahiro effectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT tsurumakazuhiro effectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT shimazawamasamitsu effectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT nagasawahideko effectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT kizakakondohshinae effectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe AT harahideaki effectoftriamcinoloneacetonideonlaserinducedchoroidalneovascularizationinmiceusingahypoxiavisualizationbioimagingprobe |