Cargando…
Reverse enGENEering of Regulatory Networks from Big Data: A Roadmap for Biologists
Omics technologies enable unbiased investigation of biological systems through massively parallel sequence acquisition or molecular measurements, bringing the life sciences into the era of Big Data. A central challenge posed by such omics datasets is how to transform these data into biological knowl...
Autores principales: | Dong, Xiaoxi, Yambartsev, Anatoly, Ramsey, Stephen A, Thomas, Lina D, Shulzhenko, Natalia, Morgun, Andrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415676/ https://www.ncbi.nlm.nih.gov/pubmed/25983554 http://dx.doi.org/10.4137/BBI.S12467 |
Ejemplares similares
-
Differentially correlated genes in co-expression networks control phenotype transitions
por: Thomas, Lina D., et al.
Publicado: (2016) -
Unexpected links reflect the noise in networks
por: Yambartsev, Anatoly, et al.
Publicado: (2016) -
Computing Workflows for Biologists: A Roadmap
por: Shade, Ashley, et al.
Publicado: (2015) -
EnGens: a computational framework for generation and analysis of representative protein conformational ensembles
por: Conev, Anja, et al.
Publicado: (2023) -
EnGens: a computational framework for generation and analysis of representative protein conformational ensembles
por: Conev, Anja, et al.
Publicado: (2023)