Cargando…
Evaluation of the Performance of Smoothing Functions in Generalized Additive Models for Spatial Variation in Disease
Generalized additive models (GAMs) with bivariate smoothing functions have been applied to estimate spatial variation in risk for many types of cancers. Only a handful of studies have evaluated the performance of smoothing functions applied in GAMs with regard to different geographical areas of elev...
Autores principales: | Siangphoe, Umaporn, Wheeler, David C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415687/ https://www.ncbi.nlm.nih.gov/pubmed/25983545 http://dx.doi.org/10.4137/CIN.S17300 |
Ejemplares similares
-
The Impact of Spatial Scales and Spatial Smoothing on the Outcome of Bayesian Spatial Model
por: Kang, Su Yun, et al.
Publicado: (2013) -
Effects of spatial smoothing on functional brain networks
por: Alakörkkö, Tuomas, et al.
Publicado: (2017) -
Exploring bias in a generalized additive model for spatial air pollution data.
por: Ramsay, Timothy, et al.
Publicado: (2003) -
Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing
por: Duncan, Earl W., et al.
Publicado: (2020) -
Spatial-temporal generalized additive model for modeling COVID-19 mortality risk in Toronto, Canada
por: Feng, Cindy
Publicado: (2022)