Cargando…
A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation
OBJECTIVE: The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process. METHODOLOGY: A systems biology approach was taken to measure mRNA and microRNA expression in vi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416001/ https://www.ncbi.nlm.nih.gov/pubmed/25928148 http://dx.doi.org/10.1371/journal.pone.0125153 |
_version_ | 1782369166304477184 |
---|---|
author | Metzler, Melissa A. Venkatesh, Srirangapatnam G. Lakshmanan, Jaganathan Carenbauer, Anne L. Perez, Sara M. Andres, Sarah A. Appana, Savitri Brock, Guy N. Wittliff, James L. Darling, Douglas S. |
author_facet | Metzler, Melissa A. Venkatesh, Srirangapatnam G. Lakshmanan, Jaganathan Carenbauer, Anne L. Perez, Sara M. Andres, Sarah A. Appana, Savitri Brock, Guy N. Wittliff, James L. Darling, Douglas S. |
author_sort | Metzler, Melissa A. |
collection | PubMed |
description | OBJECTIVE: The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process. METHODOLOGY: A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM) was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation. RESULTS: Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a) progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1Mist1 promoter. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp) gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation. CONCLUSION: This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a genetic switch involving transcription factors and microRNAs, and transition to an Xbp1 driven differentiation network. This proposed network suggests key regulatory interactions in parotid gland terminal differentiation. |
format | Online Article Text |
id | pubmed-4416001 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44160012015-05-07 A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation Metzler, Melissa A. Venkatesh, Srirangapatnam G. Lakshmanan, Jaganathan Carenbauer, Anne L. Perez, Sara M. Andres, Sarah A. Appana, Savitri Brock, Guy N. Wittliff, James L. Darling, Douglas S. PLoS One Research Article OBJECTIVE: The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process. METHODOLOGY: A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM) was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation. RESULTS: Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a) progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1Mist1 promoter. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp) gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation. CONCLUSION: This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a genetic switch involving transcription factors and microRNAs, and transition to an Xbp1 driven differentiation network. This proposed network suggests key regulatory interactions in parotid gland terminal differentiation. Public Library of Science 2015-04-30 /pmc/articles/PMC4416001/ /pubmed/25928148 http://dx.doi.org/10.1371/journal.pone.0125153 Text en © 2015 Metzler et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Metzler, Melissa A. Venkatesh, Srirangapatnam G. Lakshmanan, Jaganathan Carenbauer, Anne L. Perez, Sara M. Andres, Sarah A. Appana, Savitri Brock, Guy N. Wittliff, James L. Darling, Douglas S. A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation |
title | A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation |
title_full | A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation |
title_fullStr | A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation |
title_full_unstemmed | A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation |
title_short | A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation |
title_sort | systems biology approach identifies a regulatory network in parotid acinar cell terminal differentiation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416001/ https://www.ncbi.nlm.nih.gov/pubmed/25928148 http://dx.doi.org/10.1371/journal.pone.0125153 |
work_keys_str_mv | AT metzlermelissaa asystemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT venkateshsrirangapatnamg asystemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT lakshmananjaganathan asystemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT carenbauerannel asystemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT perezsaram asystemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT andressaraha asystemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT appanasavitri asystemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT brockguyn asystemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT wittliffjamesl asystemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT darlingdouglass asystemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT metzlermelissaa systemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT venkateshsrirangapatnamg systemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT lakshmananjaganathan systemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT carenbauerannel systemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT perezsaram systemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT andressaraha systemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT appanasavitri systemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT brockguyn systemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT wittliffjamesl systemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation AT darlingdouglass systemsbiologyapproachidentifiesaregulatorynetworkinparotidacinarcellterminaldifferentiation |