Cargando…
Sparse conditional logistic regression for analyzing large-scale matched data from epidemiological studies: a simple algorithm
This paper considers the problem of estimation and variable selection for large high-dimensional data (high number of predictors p and large sample size N, without excluding the possibility that N < p) resulting from an individually matched case-control study. We develop a simple algorithm for th...
Autores principales: | Avalos, Marta, Pouyes, Hélène, Grandvalet, Yves, Orriols, Ludivine, Lagarde, Emmanuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416185/ https://www.ncbi.nlm.nih.gov/pubmed/25916593 http://dx.doi.org/10.1186/1471-2105-16-S6-S1 |
Ejemplares similares
-
Penalized logistic regression with low prevalence exposures beyond high dimensional settings
por: Doerken, Sam, et al.
Publicado: (2019) -
Leukemia Prediction Using Sparse Logistic Regression
por: Manninen, Tapio, et al.
Publicado: (2013) -
Sparse Logistic Regression-Based EEG Channel Optimization Algorithm for Improved Universality across Participants
por: Shi, Yuxi, et al.
Publicado: (2023) -
Sparse Ordinal Logistic Regression and Its Application to Brain Decoding
por: Satake, Emi, et al.
Publicado: (2018) -
Analysis of sparse data in logistic regression in medical research: A newer approach
por: Devika, S, et al.
Publicado: (2016)