Cargando…

MARK/Par1 Kinase Is Activated Downstream of NMDA Receptors through a PKA-Dependent Mechanism

The Par1 kinases, also known as microtubule affinity-regulating kinases (MARKs), are important for the establishment of cell polarity from worms to mammals. Dysregulation of these kinases has been implicated in autism, Alzheimer’s disease and cancer. Despite their important function in health and di...

Descripción completa

Detalles Bibliográficos
Autores principales: Bernard, Laura P., Zhang, Huaye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416788/
https://www.ncbi.nlm.nih.gov/pubmed/25932647
http://dx.doi.org/10.1371/journal.pone.0124816
Descripción
Sumario:The Par1 kinases, also known as microtubule affinity-regulating kinases (MARKs), are important for the establishment of cell polarity from worms to mammals. Dysregulation of these kinases has been implicated in autism, Alzheimer’s disease and cancer. Despite their important function in health and disease, it has been unclear how the activity of MARK/Par1 is regulated by signals from cell surface receptors. Here we show that MARK/Par1 is activated downstream of NMDA receptors in primary hippocampal neurons. Further, we show that this activation is dependent on protein kinase A (PKA), through the phosphorylation of Ser431 of Par4/LKB1, the major upstream kinase of MARK/Par1. Together, our data reveal a novel mechanism by which MARK/Par1 is activated at the neuronal synapse.