Cargando…
Network-based Phenome-Genome Association Prediction by Bi-Random Walk
MOTIVATION: The availability of ontologies and systematic documentations of phenotypes and their genetic associations has enabled large-scale network-based global analyses of the association between the complete collection of phenotypes (phenome) and genes. To provide a fundamental understanding of...
Autores principales: | Xie, MaoQiang, Xu, YingJie, Zhang, YaoGong, Hwang, TaeHyun, Kuang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416812/ https://www.ncbi.nlm.nih.gov/pubmed/25933025 http://dx.doi.org/10.1371/journal.pone.0125138 |
Ejemplares similares
-
Co-clustering phenome–genome for phenotype classification and disease gene discovery
por: Hwang, TaeHyun, et al.
Publicado: (2012) -
Prioritizing disease genes with an improved dual label propagation framework
por: Zhang, Yaogong, et al.
Publicado: (2018) -
Drug repositioning based on individual bi-random walks on a heterogeneous network
por: Wang, Yuehui, et al.
Publicado: (2019) -
An Entropy-Based Directed Random Walk for Cancer Classification Using Gene Expression Data Based on Bi-Random Walk on Two Separated Networks
por: Tay, Xin Hui, et al.
Publicado: (2023) -
Laplacian normalization and bi-random walks on heterogeneous networks for predicting lncRNA-disease associations
por: Wen, Yaping, et al.
Publicado: (2018)