Cargando…

Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector

Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes....

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Baiying, Tan, Ee-Leng, Chen, Siping, Zhuo, Liu, Li, Shengli, Ni, Dong, Wang, Tianfu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416891/
https://www.ncbi.nlm.nih.gov/pubmed/25933215
http://dx.doi.org/10.1371/journal.pone.0121838
Descripción
Sumario:Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods.