Cargando…
A Neural Network-Based Optimal Spatial Filter Design Method for Motor Imagery Classification
In this study, a novel spatial filter design method is introduced. Spatial filtering is an important processing step for feature extraction in motor imagery-based brain-computer interfaces. This paper introduces a new motor imagery signal classification method combined with spatial filter optimizati...
Autores principales: | Yuksel, Ayhan, Olmez, Tamer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416937/ https://www.ncbi.nlm.nih.gov/pubmed/25933101 http://dx.doi.org/10.1371/journal.pone.0125039 |
Ejemplares similares
-
A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
por: Wu, Hao, et al.
Publicado: (2019) -
Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network
por: Luo, Tian-jian, et al.
Publicado: (2018) -
Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network
por: Miao, Minmin, et al.
Publicado: (2020) -
A Novel Two-Stage Refine Filtering Method for EEG-Based Motor Imagery Classification
por: Yan, Yuxin, et al.
Publicado: (2021) -
Learning Optimal Time-Frequency-Spatial Features by the CiSSA-CSP Method for Motor Imagery EEG Classification
por: Hu, Hai, et al.
Publicado: (2022)