Cargando…
Above–belowground interactions govern the course and impact of biological invasions
Introduction of exotic organisms that subsequently become invasive is considered a serious threat to global biodiversity, and both scientists and nature-conservationists attempt to find explanations and means to meet this challenge. This requires a thorough analysis of the invasion phenomenon in an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417141/ https://www.ncbi.nlm.nih.gov/pubmed/25854693 http://dx.doi.org/10.1093/aobpla/plv025 |
_version_ | 1782369314074001408 |
---|---|
author | Vestergård, Mette Rønn, Regin Ekelund, Flemming |
author_facet | Vestergård, Mette Rønn, Regin Ekelund, Flemming |
author_sort | Vestergård, Mette |
collection | PubMed |
description | Introduction of exotic organisms that subsequently become invasive is considered a serious threat to global biodiversity, and both scientists and nature-conservationists attempt to find explanations and means to meet this challenge. This requires a thorough analysis of the invasion phenomenon in an evolutionary and ecological context; in the case of invasive plants, we must have a major focus on above–belowground interactions. Thus, we discuss different theories that have been proposed to explain the course of invasions through interactions between plants and soil organisms. Further, a thorough analysis of invasion must include a temporal context. Invasions will typically include an initial acute phase, where the invader expands its territory and a later chronic phase where equilibrium is re-established. Many studies fail to make this distinction, which is unfortunate as it makes it impossible to thoroughly understand the invasion of focus. Thus, we claim that invasions fall into two broad categories. Some invasions irreversibly change pools and pathways of matter and energy in the invaded system; even if the abundance of the invader is reduced or it is completely removed, the system will not return to its former state. We use earthworm invasion in North America as a particular conspicuous example of invasive species that irreversibly change ecosystems. However, invasions may also be reversible, where the exotic organism dominates the system for a period, but in the longer term it either disappears, declines or its negative impact decreases. If the fundamental ecosystem structure and flows of energy and matter have not been changed, the system will return to a state not principally different from the original. |
format | Online Article Text |
id | pubmed-4417141 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-44171412015-06-26 Above–belowground interactions govern the course and impact of biological invasions Vestergård, Mette Rønn, Regin Ekelund, Flemming AoB Plants Invited Reviews Introduction of exotic organisms that subsequently become invasive is considered a serious threat to global biodiversity, and both scientists and nature-conservationists attempt to find explanations and means to meet this challenge. This requires a thorough analysis of the invasion phenomenon in an evolutionary and ecological context; in the case of invasive plants, we must have a major focus on above–belowground interactions. Thus, we discuss different theories that have been proposed to explain the course of invasions through interactions between plants and soil organisms. Further, a thorough analysis of invasion must include a temporal context. Invasions will typically include an initial acute phase, where the invader expands its territory and a later chronic phase where equilibrium is re-established. Many studies fail to make this distinction, which is unfortunate as it makes it impossible to thoroughly understand the invasion of focus. Thus, we claim that invasions fall into two broad categories. Some invasions irreversibly change pools and pathways of matter and energy in the invaded system; even if the abundance of the invader is reduced or it is completely removed, the system will not return to its former state. We use earthworm invasion in North America as a particular conspicuous example of invasive species that irreversibly change ecosystems. However, invasions may also be reversible, where the exotic organism dominates the system for a period, but in the longer term it either disappears, declines or its negative impact decreases. If the fundamental ecosystem structure and flows of energy and matter have not been changed, the system will return to a state not principally different from the original. Oxford University Press 2015-04-08 /pmc/articles/PMC4417141/ /pubmed/25854693 http://dx.doi.org/10.1093/aobpla/plv025 Text en Published by Oxford University Press on behalf of the Annals of Botany Company. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Invited Reviews Vestergård, Mette Rønn, Regin Ekelund, Flemming Above–belowground interactions govern the course and impact of biological invasions |
title | Above–belowground interactions govern the course and impact of biological invasions |
title_full | Above–belowground interactions govern the course and impact of biological invasions |
title_fullStr | Above–belowground interactions govern the course and impact of biological invasions |
title_full_unstemmed | Above–belowground interactions govern the course and impact of biological invasions |
title_short | Above–belowground interactions govern the course and impact of biological invasions |
title_sort | above–belowground interactions govern the course and impact of biological invasions |
topic | Invited Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417141/ https://www.ncbi.nlm.nih.gov/pubmed/25854693 http://dx.doi.org/10.1093/aobpla/plv025 |
work_keys_str_mv | AT vestergardmette abovebelowgroundinteractionsgovernthecourseandimpactofbiologicalinvasions AT rønnregin abovebelowgroundinteractionsgovernthecourseandimpactofbiologicalinvasions AT ekelundflemming abovebelowgroundinteractionsgovernthecourseandimpactofbiologicalinvasions |