Cargando…

Heme activation by DNA: isoguanine pentaplexes, but not quadruplexes, bind heme and enhance its oxidative activity

Guanine-rich, single-stranded, DNAs and RNAs are able to fold to form G-quadruplexes that are held together by guanine base quartets. G-quadruplexes are known to bind ferric heme [Fe(III)-protoporphyrin IX] and to strongly activate such bound hemes toward peroxidase (1-electron oxidation) as well as...

Descripción completa

Detalles Bibliográficos
Autores principales: Shumayrikh, Nisreen, Huang, Yu Chuan, Sen, Dipankar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417173/
https://www.ncbi.nlm.nih.gov/pubmed/25824944
http://dx.doi.org/10.1093/nar/gkv266
Descripción
Sumario:Guanine-rich, single-stranded, DNAs and RNAs are able to fold to form G-quadruplexes that are held together by guanine base quartets. G-quadruplexes are known to bind ferric heme [Fe(III)-protoporphyrin IX] and to strongly activate such bound hemes toward peroxidase (1-electron oxidation) as well as oxygenase/peroxygenase (2-electron oxidation) activities. However, much remains unknown about how such activation is effected. Herein, we investigated whether G-quadruplexes were strictly required for heme activation or whether related multi-stranded DNA/RNA structures such as isoguanine (iG) quadruplexes and pentaplexes could also bind and activate heme. We found that iG-pentaplexes did indeed bind and activate heme comparably to G-quadruplexes; however, iG-quadruplexes did neither. Earlier structural and computational studies had suggested that while the geometry of backbone-unconstrained iG-quintets templated by cations such as Na(+) or NH(4)(+) was planar, that of iG-quartets deviated from planarity. We hypothesize that the binding as well as activation of heme by DNA or RNA is strongly supported by the planarity of the nucleobase quartet or quintet that interacts directly with the heme.