Cargando…

Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity

BACKGROUND: L-Amino acid oxidases (LAOs) have been generally described as flavoproteins that oxidize amino acids releasing the corresponding ketoacid, ammonium and hydrogen peroxide. The generation of hydrogen peroxide gives to these enzymes antimicrobial characteristics. They are involved in proces...

Descripción completa

Detalles Bibliográficos
Autores principales: Campillo-Brocal, Jonatan C, Chacón-Verdú, María Dolores, Lucas-Elío, Patricia, Sánchez-Amat, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417212/
https://www.ncbi.nlm.nih.gov/pubmed/25886995
http://dx.doi.org/10.1186/s12864-015-1455-y
_version_ 1782369331533840384
author Campillo-Brocal, Jonatan C
Chacón-Verdú, María Dolores
Lucas-Elío, Patricia
Sánchez-Amat, Antonio
author_facet Campillo-Brocal, Jonatan C
Chacón-Verdú, María Dolores
Lucas-Elío, Patricia
Sánchez-Amat, Antonio
author_sort Campillo-Brocal, Jonatan C
collection PubMed
description BACKGROUND: L-Amino acid oxidases (LAOs) have been generally described as flavoproteins that oxidize amino acids releasing the corresponding ketoacid, ammonium and hydrogen peroxide. The generation of hydrogen peroxide gives to these enzymes antimicrobial characteristics. They are involved in processes such as biofilm development and microbial competition. LAOs are of great biotechnological interest in different applications such as the design of biosensors, biotransformations and biomedicine. The marine bacterium Marinomonas mediterranea synthesizes LodA, the first known LAO that contains a quinone cofactor. LodA is encoded in an operon that contains a second gene coding for LodB, a protein required for the post-translational modification generating the cofactor. Recently, GoxA, a quinoprotein with sequence similarity to LodA but with a different enzymatic activity (glycine oxidase instead of lysine-ε-oxidase) has been described. The aim of this work has been to study the distribution of genes similar to lodA and/or goxA in sequenced microbial genomes and to get insight into the evolution of this novel family of proteins through phylogenetic analysis. RESULTS: Genes encoding LodA-like proteins have been detected in several bacterial classes. However, they are absent in Archaea and detected only in a small group of fungi of the class Agaromycetes. The vast majority of the genes detected are in a genome region with a nearby lodB-like gene suggesting a specific interaction between both partner proteins. Sequence alignment of the LodA-like proteins allowed the detection of several conserved residues. All of them showed a Cys and a Trp that aligned with the residues that are forming part of the cysteine tryptophilquinone (CTQ) cofactor in LodA. Phylogenetic analysis revealed that LodA-like proteins can be clustered in different groups. Interestingly, LodA and GoxA are in different groups, indicating that those groups are related to the enzymatic activity of the proteins detected. CONCLUSIONS: Genome mining has revealed for the first time the broad distribution of LodA-like proteins containing a CTQ cofactor in many different microbial groups. This study provides a platform to explore the potentially novel enzymatic activities of the proteins detected, the mechanisms of post-translational modifications involved in their synthesis, as well as their biological relevance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1455-y) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4417212
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-44172122015-05-03 Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity Campillo-Brocal, Jonatan C Chacón-Verdú, María Dolores Lucas-Elío, Patricia Sánchez-Amat, Antonio BMC Genomics Research Article BACKGROUND: L-Amino acid oxidases (LAOs) have been generally described as flavoproteins that oxidize amino acids releasing the corresponding ketoacid, ammonium and hydrogen peroxide. The generation of hydrogen peroxide gives to these enzymes antimicrobial characteristics. They are involved in processes such as biofilm development and microbial competition. LAOs are of great biotechnological interest in different applications such as the design of biosensors, biotransformations and biomedicine. The marine bacterium Marinomonas mediterranea synthesizes LodA, the first known LAO that contains a quinone cofactor. LodA is encoded in an operon that contains a second gene coding for LodB, a protein required for the post-translational modification generating the cofactor. Recently, GoxA, a quinoprotein with sequence similarity to LodA but with a different enzymatic activity (glycine oxidase instead of lysine-ε-oxidase) has been described. The aim of this work has been to study the distribution of genes similar to lodA and/or goxA in sequenced microbial genomes and to get insight into the evolution of this novel family of proteins through phylogenetic analysis. RESULTS: Genes encoding LodA-like proteins have been detected in several bacterial classes. However, they are absent in Archaea and detected only in a small group of fungi of the class Agaromycetes. The vast majority of the genes detected are in a genome region with a nearby lodB-like gene suggesting a specific interaction between both partner proteins. Sequence alignment of the LodA-like proteins allowed the detection of several conserved residues. All of them showed a Cys and a Trp that aligned with the residues that are forming part of the cysteine tryptophilquinone (CTQ) cofactor in LodA. Phylogenetic analysis revealed that LodA-like proteins can be clustered in different groups. Interestingly, LodA and GoxA are in different groups, indicating that those groups are related to the enzymatic activity of the proteins detected. CONCLUSIONS: Genome mining has revealed for the first time the broad distribution of LodA-like proteins containing a CTQ cofactor in many different microbial groups. This study provides a platform to explore the potentially novel enzymatic activities of the proteins detected, the mechanisms of post-translational modifications involved in their synthesis, as well as their biological relevance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1455-y) contains supplementary material, which is available to authorized users. BioMed Central 2015-03-24 /pmc/articles/PMC4417212/ /pubmed/25886995 http://dx.doi.org/10.1186/s12864-015-1455-y Text en © Campillo-Brocal et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Campillo-Brocal, Jonatan C
Chacón-Verdú, María Dolores
Lucas-Elío, Patricia
Sánchez-Amat, Antonio
Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity
title Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity
title_full Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity
title_fullStr Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity
title_full_unstemmed Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity
title_short Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity
title_sort distribution in microbial genomes of genes similar to loda and goxa which encode a novel family of quinoproteins with amino acid oxidase activity
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417212/
https://www.ncbi.nlm.nih.gov/pubmed/25886995
http://dx.doi.org/10.1186/s12864-015-1455-y
work_keys_str_mv AT campillobrocaljonatanc distributioninmicrobialgenomesofgenessimilartolodaandgoxawhichencodeanovelfamilyofquinoproteinswithaminoacidoxidaseactivity
AT chaconverdumariadolores distributioninmicrobialgenomesofgenessimilartolodaandgoxawhichencodeanovelfamilyofquinoproteinswithaminoacidoxidaseactivity
AT lucaseliopatricia distributioninmicrobialgenomesofgenessimilartolodaandgoxawhichencodeanovelfamilyofquinoproteinswithaminoacidoxidaseactivity
AT sanchezamatantonio distributioninmicrobialgenomesofgenessimilartolodaandgoxawhichencodeanovelfamilyofquinoproteinswithaminoacidoxidaseactivity