Cargando…
Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Moti...
Autores principales: | Suraj, Tiwari, Purnendu, Ghosh, Subhojit, Sinha, Rakesh Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417985/ https://www.ncbi.nlm.nih.gov/pubmed/25972896 http://dx.doi.org/10.1155/2015/945729 |
Ejemplares similares
-
Investigating Feature Ranking Methods for Sub-Band and Relative Power Features in Motor Imagery Task Classification
por: Mohdiwale, Samrudhi, et al.
Publicado: (2021) -
Classification of Four-Class Motor Imagery Employing Single-Channel Electroencephalography
por: Ge, Sheng, et al.
Publicado: (2014) -
A hybrid GA-PSO strategy for computing task offloading towards MES scenarios
por: Li, Wenzao, et al.
Publicado: (2023) -
Canonical PSO Based K-Means Clustering Approach for Real Datasets
por: Dey, Lopamudra, et al.
Publicado: (2014) -
A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification
Publicado: (2015)