Cargando…
Feature Selection Applying Statistical and Neurofuzzy Methods to EEG-Based BCI
This paper presents an investigation aimed at drastically reducing the processing burden required by motor imagery brain-computer interface (BCI) systems based on electroencephalography (EEG). In this research, the focus has moved from the channel to the feature paradigm, and a 96% reduction of the...
Autores principales: | Martinez-Leon, Juan-Antonio, Cano-Izquierdo, Jose-Manuel, Ibarrola, Julio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419264/ https://www.ncbi.nlm.nih.gov/pubmed/25977685 http://dx.doi.org/10.1155/2015/781207 |
Ejemplares similares
-
Neurofuzzy adaptive modelling and control
por: Brown, Martin C, et al.
Publicado: (1994) -
Fuzzy logic and neuroFuzzy applications in business and finance /
por: Von Altrock, Constantin
Publicado: (1997) -
A learnable EEG channel selection method for MI-BCI using efficient channel attention
por: Tong, Lina, et al.
Publicado: (2023) -
Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network
por: Pamučar, Dragan, et al.
Publicado: (2016) -
Enhanced Performance by Time-Frequency-Phase Feature for EEG-Based BCI Systems
por: Xu, Baolei, et al.
Publicado: (2014)