Cargando…
Computer-Aided Lung Nodule Recognition by SVM Classifier Based on Combination of Random Undersampling and SMOTE
In lung cancer computer-aided detection/diagnosis (CAD) systems, classification of regions of interest (ROI) is often used to detect/diagnose lung nodule accurately. However, problems of unbalanced datasets often have detrimental effects on the performance of classification. In this paper, both mino...
Autores principales: | Sui, Yuan, Wei, Ying, Zhao, Dazhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419492/ https://www.ncbi.nlm.nih.gov/pubmed/25977704 http://dx.doi.org/10.1155/2015/368674 |
Ejemplares similares
-
A Hybrid Method to Predict Postoperative Survival of Lung Cancer Using Improved SMOTE and Adaptive SVM
por: Shen, Jiang, et al.
Publicado: (2021) -
A Novel Ensemble Method for Imbalanced Data Learning: Bagging of Extrapolation-SMOTE SVM
por: Wang, Qi, et al.
Publicado: (2017) -
SMOTE-CD: SMOTE for compositional data
por: Nguyen, Teo, et al.
Publicado: (2023) -
Combination of minimum enclosing balls classifier with SVM in coal-rock recognition
por: Song, QingJun, et al.
Publicado: (2017) -
Melanoma Detection Using XGB Classifier Combined with Feature Extraction and K-Means SMOTE Techniques
por: Chang, Chih-Chi, et al.
Publicado: (2022)