Cargando…
Discovering Associations Among Diagnosis Groups Using Topic Modeling
With the rapid growth of electronic medical records (EMR), there is an increasing need of automatically extract patterns or rules from EMR data with machine learning and data mining technqiues. In this work, we applied unsupervised statistical model, latent Dirichlet allocations (LDA), to cluster pa...
Autores principales: | Li, Ding Cheng, Thermeau, Terry, Chute, Christopher, Liu, Hongfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419765/ https://www.ncbi.nlm.nih.gov/pubmed/25954576 |
Ejemplares similares
-
Discovering Health Topics in Social Media Using Topic Models
por: Paul, Michael J., et al.
Publicado: (2014) -
A Bibliometric Analysis on Cancer Population Science with Topic Modeling
por: Li, Ding-Cheng, et al.
Publicado: (2015) -
Discovering associations between problem list and practice setting
por: Wang, Liwei, et al.
Publicado: (2019) -
Discovering opinion leaders for medical topics using news articles
por: Jonnalagadda, Siddhartha, et al.
Publicado: (2012) -
An Author Topic Analysis of Tobacco Regulation Investigators
por: Li, Ding Cheng, et al.
Publicado: (2014)