Cargando…
Semi-Supervised Learning to Identify UMLS Semantic Relations
The UMLS Semantic Network is constructed by experts and requires periodic expert review to update. We propose and implement a semi-supervised approach for automatically identifying UMLS semantic relations from narrative text in PubMed. Our method analyzes biomedical narrative text to collect semanti...
Autores principales: | Luo, Yuan, Uzuner, Ozlem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419772/ https://www.ncbi.nlm.nih.gov/pubmed/25954580 |
Ejemplares similares
-
Semantic reclassification of the UMLS concepts
por: Fan, Jung-Wei, et al.
Publicado: (2008) -
UML 2 Semantics and Applications
por: Lano, Kevin
Publicado: (2009) -
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021) -
Sculpting the UMLS Refined Semantic Network
por: He, Zhe, et al.
Publicado: (2014) -
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023)