Cargando…
Phosphatase and tensin homolog-induced putative kinase 1 and Parkin in diabetic heart: Role of mitophagy
Diabetes is an independent risk factor for cardiovascular morbidity and mortality. Diabetes-associated cardiac pathophysiology is recognized to be due to reasons including metabolic consequences on the myocardium. The heart is a highly energy-demanding tissue, with mitochondria supplying over 90% of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420554/ https://www.ncbi.nlm.nih.gov/pubmed/25969707 http://dx.doi.org/10.1111/jdi.12302 |
Sumario: | Diabetes is an independent risk factor for cardiovascular morbidity and mortality. Diabetes-associated cardiac pathophysiology is recognized to be due to reasons including metabolic consequences on the myocardium. The heart is a highly energy-demanding tissue, with mitochondria supplying over 90% of adenosine triphosphate. The involvement of mitochondrial dysfunction in diabetes-related cardiac pathogenesis has been studied. Phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and Parkin, initially identified to be associated with the pathogenesis of a familiar form of Parkinson's disease, have recently been recognized to play a critical role in mediating cardiomyocytes’ adaption to stresses. Extensive studies have suggested PINK1 and Parkin as key regulators of mitophagy. In the present review article, we will first summarize the new findings on PINK1/Parkin acting in cardioprotection, and then discuss the potential role of PINK1/Parkin in diabetic heart by mediating mitophagy. |
---|