Cargando…
Bayesian modeling of the covariance structure for irregular longitudinal data using the partial autocorrelation function
In long-term follow-up studies, irregular longitudinal data are observed when individuals are assessed repeatedly over time but at uncommon and irregularly spaced time points. Modeling the covariance structure for this type of data is challenging, as it requires specification of a covariance functio...
Autores principales: | Su, Li, Daniels, Michael J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420715/ https://www.ncbi.nlm.nih.gov/pubmed/25762065 http://dx.doi.org/10.1002/sim.6465 |
Ejemplares similares
-
Bayesian Covariance Structure Modeling of Responses and Process Data
por: Klotzke, Konrad, et al.
Publicado: (2019) -
Bayesian Analysis of First-Order Markov Models for Autocorrelated Binary Responses
por: Lee, Dasom, et al.
Publicado: (2022) -
Partial Autocorrelation Diagnostics for Count Time Series
por: Weiß, Christian H., et al.
Publicado: (2023) -
Can temporal covariation and autocorrelation in demographic rates affect population dynamics in a raptor species?
por: Fay, Rémi, et al.
Publicado: (2020) -
Disease Mapping and Regression with Count Data in the Presence of Overdispersion and Spatial Autocorrelation: A Bayesian Model Averaging Approach
por: Mohebbi, Mohammadreza, et al.
Publicado: (2014)