Cargando…
Multiple conformational states in retrospective virtual screening – homology models vs. crystal structures: beta-2 adrenergic receptor case study
BACKGROUND: Distinguishing active from inactive compounds is one of the crucial problems of molecular docking, especially in the context of virtual screening experiments. The randomization of poses and the natural flexibility of the protein make this discrimination even harder. Some of the recent ap...
Autores principales: | Mordalski, Stefan, Witek, Jagna, Smusz, Sabina, Rataj, Krzysztof, Bojarski, Andrzej J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420846/ https://www.ncbi.nlm.nih.gov/pubmed/25949744 http://dx.doi.org/10.1186/s13321-015-0062-x |
Ejemplares similares
-
Application of Structural Interaction Fingerpints (SIFts) into post-docking analysis - insight into activity and selectivity
por: Witek, Jagna, et al.
Publicado: (2013) -
The importance of template choice in homology modeling. A 5-HT(6)R case study
por: Rataj, Krzysztof, et al.
Publicado: (2013) -
The influence of negative training set size on machine learning-based virtual screening
por: Kurczab, Rafał, et al.
Publicado: (2014) -
Evaluation of different machine learning methods for ligand-based virtual screening
por: Kurczab, R, et al.
Publicado: (2011) -
The influence of the inactives subset generation on the performance of machine learning methods
por: Smusz, Sabina, et al.
Publicado: (2013)