Cargando…
Increasing signal processing sophistication in the calculation of the respiratory modulation of the photoplethysmogram (DPOP)
DPOP (∆POP or Delta-POP) is a non-invasive parameter which measures the strength of respiratory modulations present in the pulse oximetry photoplethysmogram (pleth) waveform. It has been proposed as a non-invasive surrogate parameter for pulse pressure variation (PPV) used in the prediction of the r...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420848/ https://www.ncbi.nlm.nih.gov/pubmed/25209132 http://dx.doi.org/10.1007/s10877-014-9613-3 |
_version_ | 1782369766774669312 |
---|---|
author | Addison, Paul S. Wang, Rui Uribe, Alberto A. Bergese, Sergio D. |
author_facet | Addison, Paul S. Wang, Rui Uribe, Alberto A. Bergese, Sergio D. |
author_sort | Addison, Paul S. |
collection | PubMed |
description | DPOP (∆POP or Delta-POP) is a non-invasive parameter which measures the strength of respiratory modulations present in the pulse oximetry photoplethysmogram (pleth) waveform. It has been proposed as a non-invasive surrogate parameter for pulse pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. Many groups have reported on the DPOP parameter and its correlation with PPV using various semi-automated algorithmic implementations. The study reported here demonstrates the performance gains made by adding increasingly sophisticated signal processing components to a fully automated DPOP algorithm. A DPOP algorithm was coded and its performance systematically enhanced through a series of code module alterations and additions. Each algorithm iteration was tested on data from 20 mechanically ventilated OR patients. Correlation coefficients and ROC curve statistics were computed at each stage. For the purposes of the analysis we split the data into a manually selected ‘stable’ region subset of the data containing relatively noise free segments and a ‘global’ set incorporating the whole data record. Performance gains were measured in terms of correlation against PPV measurements in OR patients undergoing controlled mechanical ventilation. Through increasingly advanced pre-processing and post-processing enhancements to the algorithm, the correlation coefficient between DPOP and PPV improved from a baseline value of R = 0.347 to R = 0.852 for the stable data set, and, correspondingly, R = 0.225 to R = 0.728 for the more challenging global data set. Marked gains in algorithm performance are achievable for manually selected stable regions of the signals using relatively simple algorithm enhancements. Significant additional algorithm enhancements, including a correction for low perfusion values, were required before similar gains were realised for the more challenging global data set. |
format | Online Article Text |
id | pubmed-4420848 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-44208482015-05-11 Increasing signal processing sophistication in the calculation of the respiratory modulation of the photoplethysmogram (DPOP) Addison, Paul S. Wang, Rui Uribe, Alberto A. Bergese, Sergio D. J Clin Monit Comput Original Research DPOP (∆POP or Delta-POP) is a non-invasive parameter which measures the strength of respiratory modulations present in the pulse oximetry photoplethysmogram (pleth) waveform. It has been proposed as a non-invasive surrogate parameter for pulse pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. Many groups have reported on the DPOP parameter and its correlation with PPV using various semi-automated algorithmic implementations. The study reported here demonstrates the performance gains made by adding increasingly sophisticated signal processing components to a fully automated DPOP algorithm. A DPOP algorithm was coded and its performance systematically enhanced through a series of code module alterations and additions. Each algorithm iteration was tested on data from 20 mechanically ventilated OR patients. Correlation coefficients and ROC curve statistics were computed at each stage. For the purposes of the analysis we split the data into a manually selected ‘stable’ region subset of the data containing relatively noise free segments and a ‘global’ set incorporating the whole data record. Performance gains were measured in terms of correlation against PPV measurements in OR patients undergoing controlled mechanical ventilation. Through increasingly advanced pre-processing and post-processing enhancements to the algorithm, the correlation coefficient between DPOP and PPV improved from a baseline value of R = 0.347 to R = 0.852 for the stable data set, and, correspondingly, R = 0.225 to R = 0.728 for the more challenging global data set. Marked gains in algorithm performance are achievable for manually selected stable regions of the signals using relatively simple algorithm enhancements. Significant additional algorithm enhancements, including a correction for low perfusion values, were required before similar gains were realised for the more challenging global data set. Springer Netherlands 2014-09-11 2015 /pmc/articles/PMC4420848/ /pubmed/25209132 http://dx.doi.org/10.1007/s10877-014-9613-3 Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Original Research Addison, Paul S. Wang, Rui Uribe, Alberto A. Bergese, Sergio D. Increasing signal processing sophistication in the calculation of the respiratory modulation of the photoplethysmogram (DPOP) |
title | Increasing signal processing sophistication in the calculation of the respiratory modulation of the photoplethysmogram (DPOP) |
title_full | Increasing signal processing sophistication in the calculation of the respiratory modulation of the photoplethysmogram (DPOP) |
title_fullStr | Increasing signal processing sophistication in the calculation of the respiratory modulation of the photoplethysmogram (DPOP) |
title_full_unstemmed | Increasing signal processing sophistication in the calculation of the respiratory modulation of the photoplethysmogram (DPOP) |
title_short | Increasing signal processing sophistication in the calculation of the respiratory modulation of the photoplethysmogram (DPOP) |
title_sort | increasing signal processing sophistication in the calculation of the respiratory modulation of the photoplethysmogram (dpop) |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420848/ https://www.ncbi.nlm.nih.gov/pubmed/25209132 http://dx.doi.org/10.1007/s10877-014-9613-3 |
work_keys_str_mv | AT addisonpauls increasingsignalprocessingsophisticationinthecalculationoftherespiratorymodulationofthephotoplethysmogramdpop AT wangrui increasingsignalprocessingsophisticationinthecalculationoftherespiratorymodulationofthephotoplethysmogramdpop AT uribealbertoa increasingsignalprocessingsophisticationinthecalculationoftherespiratorymodulationofthephotoplethysmogramdpop AT bergesesergiod increasingsignalprocessingsophisticationinthecalculationoftherespiratorymodulationofthephotoplethysmogramdpop |