Cargando…

Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness

We propose an algorithm for vessel extraction in retinal images. The first step consists of applying anisotropic diffusion filtering in the initial vessel network in order to restore disconnected vessel lines and eliminate noisy lines. In the second step, a multiscale line-tracking procedure allows...

Descripción completa

Detalles Bibliográficos
Autores principales: Ben Abdallah, Mariem, Malek, Jihene, Azar, Ahmad Taher, Montesinos, Philippe, Belmabrouk, Hafedh, Esclarín Monreal, Julio, Krissian, Karl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421077/
https://www.ncbi.nlm.nih.gov/pubmed/25977682
http://dx.doi.org/10.1155/2015/519024
_version_ 1782369789075783680
author Ben Abdallah, Mariem
Malek, Jihene
Azar, Ahmad Taher
Montesinos, Philippe
Belmabrouk, Hafedh
Esclarín Monreal, Julio
Krissian, Karl
author_facet Ben Abdallah, Mariem
Malek, Jihene
Azar, Ahmad Taher
Montesinos, Philippe
Belmabrouk, Hafedh
Esclarín Monreal, Julio
Krissian, Karl
author_sort Ben Abdallah, Mariem
collection PubMed
description We propose an algorithm for vessel extraction in retinal images. The first step consists of applying anisotropic diffusion filtering in the initial vessel network in order to restore disconnected vessel lines and eliminate noisy lines. In the second step, a multiscale line-tracking procedure allows detecting all vessels having similar dimensions at a chosen scale. Computing the individual image maps requires different steps. First, a number of points are preselected using the eigenvalues of the Hessian matrix. These points are expected to be near to a vessel axis. Then, for each preselected point, the response map is computed from gradient information of the image at the current scale. Finally, the multiscale image map is derived after combining the individual image maps at different scales (sizes). Two publicly available datasets have been used to test the performance of the suggested method. The main dataset is the STARE project's dataset and the second one is the DRIVE dataset. The experimental results, applied on the STARE dataset, show a maximum accuracy average of around 94.02%. Also, when performed on the DRIVE database, the maximum accuracy average reaches 91.55%.
format Online
Article
Text
id pubmed-4421077
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-44210772015-05-14 Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness Ben Abdallah, Mariem Malek, Jihene Azar, Ahmad Taher Montesinos, Philippe Belmabrouk, Hafedh Esclarín Monreal, Julio Krissian, Karl Int J Biomed Imaging Research Article We propose an algorithm for vessel extraction in retinal images. The first step consists of applying anisotropic diffusion filtering in the initial vessel network in order to restore disconnected vessel lines and eliminate noisy lines. In the second step, a multiscale line-tracking procedure allows detecting all vessels having similar dimensions at a chosen scale. Computing the individual image maps requires different steps. First, a number of points are preselected using the eigenvalues of the Hessian matrix. These points are expected to be near to a vessel axis. Then, for each preselected point, the response map is computed from gradient information of the image at the current scale. Finally, the multiscale image map is derived after combining the individual image maps at different scales (sizes). Two publicly available datasets have been used to test the performance of the suggested method. The main dataset is the STARE project's dataset and the second one is the DRIVE dataset. The experimental results, applied on the STARE dataset, show a maximum accuracy average of around 94.02%. Also, when performed on the DRIVE database, the maximum accuracy average reaches 91.55%. Hindawi Publishing Corporation 2015 2015-04-22 /pmc/articles/PMC4421077/ /pubmed/25977682 http://dx.doi.org/10.1155/2015/519024 Text en Copyright © 2015 Mariem Ben Abdallah et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Ben Abdallah, Mariem
Malek, Jihene
Azar, Ahmad Taher
Montesinos, Philippe
Belmabrouk, Hafedh
Esclarín Monreal, Julio
Krissian, Karl
Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
title Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
title_full Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
title_fullStr Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
title_full_unstemmed Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
title_short Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
title_sort automatic extraction of blood vessels in the retinal vascular tree using multiscale medialness
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421077/
https://www.ncbi.nlm.nih.gov/pubmed/25977682
http://dx.doi.org/10.1155/2015/519024
work_keys_str_mv AT benabdallahmariem automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
AT malekjihene automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
AT azarahmadtaher automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
AT montesinosphilippe automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
AT belmabroukhafedh automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
AT esclarinmonrealjulio automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
AT krissiankarl automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness