Cargando…
Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
We propose an algorithm for vessel extraction in retinal images. The first step consists of applying anisotropic diffusion filtering in the initial vessel network in order to restore disconnected vessel lines and eliminate noisy lines. In the second step, a multiscale line-tracking procedure allows...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421077/ https://www.ncbi.nlm.nih.gov/pubmed/25977682 http://dx.doi.org/10.1155/2015/519024 |
_version_ | 1782369789075783680 |
---|---|
author | Ben Abdallah, Mariem Malek, Jihene Azar, Ahmad Taher Montesinos, Philippe Belmabrouk, Hafedh Esclarín Monreal, Julio Krissian, Karl |
author_facet | Ben Abdallah, Mariem Malek, Jihene Azar, Ahmad Taher Montesinos, Philippe Belmabrouk, Hafedh Esclarín Monreal, Julio Krissian, Karl |
author_sort | Ben Abdallah, Mariem |
collection | PubMed |
description | We propose an algorithm for vessel extraction in retinal images. The first step consists of applying anisotropic diffusion filtering in the initial vessel network in order to restore disconnected vessel lines and eliminate noisy lines. In the second step, a multiscale line-tracking procedure allows detecting all vessels having similar dimensions at a chosen scale. Computing the individual image maps requires different steps. First, a number of points are preselected using the eigenvalues of the Hessian matrix. These points are expected to be near to a vessel axis. Then, for each preselected point, the response map is computed from gradient information of the image at the current scale. Finally, the multiscale image map is derived after combining the individual image maps at different scales (sizes). Two publicly available datasets have been used to test the performance of the suggested method. The main dataset is the STARE project's dataset and the second one is the DRIVE dataset. The experimental results, applied on the STARE dataset, show a maximum accuracy average of around 94.02%. Also, when performed on the DRIVE database, the maximum accuracy average reaches 91.55%. |
format | Online Article Text |
id | pubmed-4421077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-44210772015-05-14 Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness Ben Abdallah, Mariem Malek, Jihene Azar, Ahmad Taher Montesinos, Philippe Belmabrouk, Hafedh Esclarín Monreal, Julio Krissian, Karl Int J Biomed Imaging Research Article We propose an algorithm for vessel extraction in retinal images. The first step consists of applying anisotropic diffusion filtering in the initial vessel network in order to restore disconnected vessel lines and eliminate noisy lines. In the second step, a multiscale line-tracking procedure allows detecting all vessels having similar dimensions at a chosen scale. Computing the individual image maps requires different steps. First, a number of points are preselected using the eigenvalues of the Hessian matrix. These points are expected to be near to a vessel axis. Then, for each preselected point, the response map is computed from gradient information of the image at the current scale. Finally, the multiscale image map is derived after combining the individual image maps at different scales (sizes). Two publicly available datasets have been used to test the performance of the suggested method. The main dataset is the STARE project's dataset and the second one is the DRIVE dataset. The experimental results, applied on the STARE dataset, show a maximum accuracy average of around 94.02%. Also, when performed on the DRIVE database, the maximum accuracy average reaches 91.55%. Hindawi Publishing Corporation 2015 2015-04-22 /pmc/articles/PMC4421077/ /pubmed/25977682 http://dx.doi.org/10.1155/2015/519024 Text en Copyright © 2015 Mariem Ben Abdallah et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ben Abdallah, Mariem Malek, Jihene Azar, Ahmad Taher Montesinos, Philippe Belmabrouk, Hafedh Esclarín Monreal, Julio Krissian, Karl Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness |
title | Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness |
title_full | Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness |
title_fullStr | Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness |
title_full_unstemmed | Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness |
title_short | Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness |
title_sort | automatic extraction of blood vessels in the retinal vascular tree using multiscale medialness |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421077/ https://www.ncbi.nlm.nih.gov/pubmed/25977682 http://dx.doi.org/10.1155/2015/519024 |
work_keys_str_mv | AT benabdallahmariem automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness AT malekjihene automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness AT azarahmadtaher automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness AT montesinosphilippe automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness AT belmabroukhafedh automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness AT esclarinmonrealjulio automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness AT krissiankarl automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness |