Cargando…
Effects of reducing the lactate and glucose content of PD solutions on the peritoneum. Is the future GLAD?
Background. Long-term peritoneal dialysis (PD) may lead to functional and morphologic changes in the peritoneal membrane, probably because of the continuous exposure to conventional dialysis solutions. Methods. The morphologic changes include neoangiogenesis and fibrosis. The authors of this article...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421143/ https://www.ncbi.nlm.nih.gov/pubmed/25983988 http://dx.doi.org/10.1093/ndtplus/sfn126 |
Sumario: | Background. Long-term peritoneal dialysis (PD) may lead to functional and morphologic changes in the peritoneal membrane, probably because of the continuous exposure to conventional dialysis solutions. Methods. The morphologic changes include neoangiogenesis and fibrosis. The authors of this article developed a long-term peritoneal exposure model in rats, in which the morphological alterations could be induced after daily peritoneal infusion of a 3.86% glucose/lactate-buffered conventional PD solution. Results and Conclusions. In the present article, a review of the model and of the results obtained with various available and experimental solutions is given. It appeared that high lactate concentrations contributed to the glucose-induced neoangiogenesis by pseudohypoxia. Glucose degradation products were probably more important in the induction of peritoneal fibrosis. The promising results of a combination of amino acids, glycerol and glucose, each in a low concentration, buffered with either pyruvate or bicarbonate/lactate, are presented and discussed. The combination of glycerol, amino acids and dextrose, dissolved in a bicarbonate/lactate buffer (GLAD), may be an option for a new generation of dialysis fluids. |
---|