Cargando…
Two novel mutations of lecithin:cholesterol acyltransferase (LCAT) gene and the influence of APOE genotypes on clinical manifestations
Familial lecithin:cholesterol acyltransferase deficiency (FLD) is an autosomal recessive disorder characterized by corneal opacity, hemolytic anemia, low high-density lipoprotein cholesterol (HDL-C) and proteinuria. Two novel lecithin:cholesterol acyltransferase (LCAT) mutations[c.278 C>T (p.Pro6...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421733/ https://www.ncbi.nlm.nih.gov/pubmed/25984174 http://dx.doi.org/10.1093/ndtplus/sfr091 |
Sumario: | Familial lecithin:cholesterol acyltransferase deficiency (FLD) is an autosomal recessive disorder characterized by corneal opacity, hemolytic anemia, low high-density lipoprotein cholesterol (HDL-C) and proteinuria. Two novel lecithin:cholesterol acyltransferase (LCAT) mutations[c.278 C>T (p.Pro69Leu); c.950 T>C (p.Met293Thr)] were identified in a 27-year-old man and in a 30-year-old woman, respectively. Both patients manifested corneal opacity, hemolytic anemia, low low-density lipoprotein cholesterol and HDL-C and proteinuria. Lipid deposits with vacuolar lucent appearance in glomerular basement membranes were observed in both cases. APOE genotype was also investigated: the first case results ϵ4/ϵ3, the second ϵ2/ϵ2; however, they shared a similar phenotype characterized by the presence of intermediate-density lipoproteins (IDL) remnant and the absence of lipoprotein-X. In conclusion, our findings suggest that APOE ϵ2/ϵ2 may not be the major determinant gene for the appearance of IDL in FLD patients. |
---|