Cargando…
Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices
A major challenge in nanoparticle self-assembly is programming the large-area organization of a single type of anisotropic nanoparticle into distinct superlattices with tunable packing efficiencies. Here we utilize nanoscale surface chemistry to direct the self-assembly of silver octahedra into thre...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421843/ https://www.ncbi.nlm.nih.gov/pubmed/25923409 http://dx.doi.org/10.1038/ncomms7990 |
Sumario: | A major challenge in nanoparticle self-assembly is programming the large-area organization of a single type of anisotropic nanoparticle into distinct superlattices with tunable packing efficiencies. Here we utilize nanoscale surface chemistry to direct the self-assembly of silver octahedra into three distinct two-dimensional plasmonic superlattices at a liquid/liquid interface. Systematically tuning the surface wettability of silver octahedra leads to a continuous superlattice structural evolution, from close-packed to progressively open structures. Notably, silver octahedra standing on vertices arranged in a square lattice is observed using hydrophobic particles. Simulations reveal that this structural evolution arises from competing interfacial forces between the particles and both liquid phases. Structure-to-function characterizations reveal that the standing octahedra array generates plasmonic ‘hotstrips', leading to nearly 10-fold more efficient surface-enhanced Raman scattering compared with the other more densely packed configurations. The ability to assemble these superlattices on the wafer scale over various platforms further widens their potential applications. |
---|