Cargando…
Multifractality of random eigenfunctions and generalization of Jarzynski equality
Systems driven out of equilibrium experience large fluctuations of the dissipated work. The same is true for wavefunction amplitudes in disordered systems close to the Anderson localization transition. In both cases, the probability distribution function is given by the large-deviation ansatz. Here...
Autores principales: | Khaymovich, I.M., Koski, J.V., Saira, O.-P., Kravtsov, V.E., Pekola, J.P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421851/ https://www.ncbi.nlm.nih.gov/pubmed/25912652 http://dx.doi.org/10.1038/ncomms8010 |
Ejemplares similares
-
How Good is Jarzynski’s Equality for Computer-Aided
Drug Design?
por: Ho, Kiet, et al.
Publicado: (2020) -
Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski’s Equality
por: Walhorn, Volker, et al.
Publicado: (2018) -
Computed Three-Dimensional Atomic Force Microscopy
Images of Biopolymers Using the Jarzynski Equality
por: Sumikama, Takashi, et al.
Publicado: (2022) -
Gamma estimator of Jarzynski equality for recovering binding energies from noisy dynamic data sets
por: Kuang, Zhifeng, et al.
Publicado: (2020) -
Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model
por: Desrosiers, P, et al.
Publicado: (2003)