Cargando…

A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity

Macroautophagy (autophagy) is a critical cellular stress response; however, the signal transduction pathways controlling autophagy induction in response to stress are poorly understood. Here we reveal a new mechanism of autophagy control whose deregulation disrupts mitochondrial integrity and energy...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiao, Shuxi, Dennis, Michael, Song, Xiufeng, Vadysirisack, Douangsone D., Salunke, Devika, Nash, Zachary, Yang, Zhifen, Liesa, Marc, Yoshioka, Jun, Matsuzawa, Shu-Ichi, Shirihai, Orian S., Lee, Richard T., Reed, John C., Ellisen, Leif W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421852/
https://www.ncbi.nlm.nih.gov/pubmed/25916556
http://dx.doi.org/10.1038/ncomms8014
_version_ 1782369960749694976
author Qiao, Shuxi
Dennis, Michael
Song, Xiufeng
Vadysirisack, Douangsone D.
Salunke, Devika
Nash, Zachary
Yang, Zhifen
Liesa, Marc
Yoshioka, Jun
Matsuzawa, Shu-Ichi
Shirihai, Orian S.
Lee, Richard T.
Reed, John C.
Ellisen, Leif W.
author_facet Qiao, Shuxi
Dennis, Michael
Song, Xiufeng
Vadysirisack, Douangsone D.
Salunke, Devika
Nash, Zachary
Yang, Zhifen
Liesa, Marc
Yoshioka, Jun
Matsuzawa, Shu-Ichi
Shirihai, Orian S.
Lee, Richard T.
Reed, John C.
Ellisen, Leif W.
author_sort Qiao, Shuxi
collection PubMed
description Macroautophagy (autophagy) is a critical cellular stress response; however, the signal transduction pathways controlling autophagy induction in response to stress are poorly understood. Here we reveal a new mechanism of autophagy control whose deregulation disrupts mitochondrial integrity and energy homeostasis in vivo. Stress conditions including hypoxia and exercise induce reactive oxygen species (ROS) through upregulation of a protein complex involving REDD1, an mTORC1 inhibitor and the pro-oxidant protein TXNIP. Decreased ROS in cells and tissues lacking either REDD1 or TXNIP increases catalytic activity of the redox-sensitive ATG4B cysteine endopeptidase, leading to enhanced LC3B delipidation and failed autophagy. Conversely, REDD1/TXNIP complex expression is sufficient to induce ROS, suppress ATG4B activity and activate autophagy. In Redd1(−/−) mice, deregulated ATG4B activity and disabled autophagic flux cause accumulation of defective mitochondria, leading to impaired oxidative phosphorylation, muscle ATP depletion and poor exercise capacity. Thus, ROS regulation through REDD1/TXNIP is physiological rheostat controlling stress-induced autophagy.
format Online
Article
Text
id pubmed-4421852
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-44218522015-05-20 A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity Qiao, Shuxi Dennis, Michael Song, Xiufeng Vadysirisack, Douangsone D. Salunke, Devika Nash, Zachary Yang, Zhifen Liesa, Marc Yoshioka, Jun Matsuzawa, Shu-Ichi Shirihai, Orian S. Lee, Richard T. Reed, John C. Ellisen, Leif W. Nat Commun Article Macroautophagy (autophagy) is a critical cellular stress response; however, the signal transduction pathways controlling autophagy induction in response to stress are poorly understood. Here we reveal a new mechanism of autophagy control whose deregulation disrupts mitochondrial integrity and energy homeostasis in vivo. Stress conditions including hypoxia and exercise induce reactive oxygen species (ROS) through upregulation of a protein complex involving REDD1, an mTORC1 inhibitor and the pro-oxidant protein TXNIP. Decreased ROS in cells and tissues lacking either REDD1 or TXNIP increases catalytic activity of the redox-sensitive ATG4B cysteine endopeptidase, leading to enhanced LC3B delipidation and failed autophagy. Conversely, REDD1/TXNIP complex expression is sufficient to induce ROS, suppress ATG4B activity and activate autophagy. In Redd1(−/−) mice, deregulated ATG4B activity and disabled autophagic flux cause accumulation of defective mitochondria, leading to impaired oxidative phosphorylation, muscle ATP depletion and poor exercise capacity. Thus, ROS regulation through REDD1/TXNIP is physiological rheostat controlling stress-induced autophagy. Nature Pub. Group 2015-04-28 /pmc/articles/PMC4421852/ /pubmed/25916556 http://dx.doi.org/10.1038/ncomms8014 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Qiao, Shuxi
Dennis, Michael
Song, Xiufeng
Vadysirisack, Douangsone D.
Salunke, Devika
Nash, Zachary
Yang, Zhifen
Liesa, Marc
Yoshioka, Jun
Matsuzawa, Shu-Ichi
Shirihai, Orian S.
Lee, Richard T.
Reed, John C.
Ellisen, Leif W.
A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity
title A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity
title_full A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity
title_fullStr A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity
title_full_unstemmed A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity
title_short A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity
title_sort redd1/txnip pro-oxidant complex regulates atg4b activity to control stress-induced autophagy and sustain exercise capacity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421852/
https://www.ncbi.nlm.nih.gov/pubmed/25916556
http://dx.doi.org/10.1038/ncomms8014
work_keys_str_mv AT qiaoshuxi aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT dennismichael aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT songxiufeng aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT vadysirisackdouangsoned aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT salunkedevika aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT nashzachary aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT yangzhifen aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT liesamarc aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT yoshiokajun aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT matsuzawashuichi aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT shirihaiorians aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT leerichardt aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT reedjohnc aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT ellisenleifw aredd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT qiaoshuxi redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT dennismichael redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT songxiufeng redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT vadysirisackdouangsoned redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT salunkedevika redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT nashzachary redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT yangzhifen redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT liesamarc redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT yoshiokajun redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT matsuzawashuichi redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT shirihaiorians redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT leerichardt redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT reedjohnc redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity
AT ellisenleifw redd1txnipprooxidantcomplexregulatesatg4bactivitytocontrolstressinducedautophagyandsustainexercisecapacity