Cargando…

Targeting TRAF3 Downstream Signaling Pathways in B cell Neoplasms

B cell neoplasms comprise >50% of blood cancers. However, many types of B cell malignancies remain incurable. Identification and validation of novel genetic risk factors and oncogenic signaling pathways are imperative for the development of new therapeutic strategies. We and others recently ident...

Descripción completa

Detalles Bibliográficos
Autores principales: Moore, Carissa R, Edwards, Shanique KE, Xie, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422099/
https://www.ncbi.nlm.nih.gov/pubmed/25960828
http://dx.doi.org/10.4172/1948-5956.1000327
Descripción
Sumario:B cell neoplasms comprise >50% of blood cancers. However, many types of B cell malignancies remain incurable. Identification and validation of novel genetic risk factors and oncogenic signaling pathways are imperative for the development of new therapeutic strategies. We and others recently identified TRAF3, a cytoplasmic adaptor protein, as a novel tumor suppressor in B lymphocytes. We found that TRAF3 inactivation results in prolonged survival of mature B cells, which eventually leads to spontaneous development of B lymphomas in mice. Corroborating our findings, TRAF3 deletions and inactivating mutations frequently occur in human B cell chronic lymphocytic leukemia, splenic marginal zone lymphoma, mantle cell lymphoma, multiple myeloma, Waldenström’s macroglobulinemia, and Hodgkin lymphoma. In this context, we have been investigating TRAF3 signaling mechanisms in B cells, and are developing new therapeutic strategies to target TRAF3 downstream signaling pathways in B cell neoplasms. Here we discuss our new translational data that demonstrate the therapeutic potential of targeting TRAF3 downstream signaling pathways in B lymphoma and multiple myeloma.