Cargando…

Medicinal value of asiaticoside for Alzheimer’s disease as assessed using single-molecule-detection fluorescence correlation spectroscopy, laser-scanning microscopy, transmission electron microscopy, and in silico docking

BACKGROUND: Identifying agents that inhibit amyloid beta peptide (Aβ) aggregation is the ultimate goal for slowing Alzheimer’s disease (AD) progression. This study investigated whether the glycoside asiaticoside inhibits Aβ(1–42) fibrillation in vitro. METHODS: Fluorescence correlation spectroscopy...

Descripción completa

Detalles Bibliográficos
Autores principales: Hossain, Shahdat, Hashimoto, Michio, Katakura, Masanori, Al Mamun, Abdullah, Shido, Osamu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422550/
https://www.ncbi.nlm.nih.gov/pubmed/25880304
http://dx.doi.org/10.1186/s12906-015-0620-9
Descripción
Sumario:BACKGROUND: Identifying agents that inhibit amyloid beta peptide (Aβ) aggregation is the ultimate goal for slowing Alzheimer’s disease (AD) progression. This study investigated whether the glycoside asiaticoside inhibits Aβ(1–42) fibrillation in vitro. METHODS: Fluorescence correlation spectroscopy (FCS), evaluating the Brownian diffusion times of moving particles in a small confocal volume at the single-molecule level, was used. If asiaticoside inhibits early Aβ(1–42) fibrillation steps, more Aβs would remain free and rapidly diffuse in the confocal volume. In contrast, “weaker or no inhibition” permits a greater number of Aβs to polymerize into oligomers, leading to fibers and gives rise to slow diffusion times in the solution. Trace amounts of 5-carboxytetramethylrhodamine (TAMRA)-labeled Aβ(1–42) in the presence of excess unlabeled Aβ(1–42) (10 μM) was used as a fluorescent probe. Steady-state and kinetic-Thioflavin T (ThT) fluorospectroscopy, laser-scanning fluorescence microscopy (LSM), and transmission electron microscopy (TEM) were also used to monitor fibrillation. Binding of asiaticoside with Aβ(1–42) at the atomic level was computationally examined using the Molegro Virtual Docker and PatchDock. RESULTS: With 1 h of incubation time for aggregation, FCS data analysis revealed that the diffusion time of TAMRA-Aβ(1–42) was 208 ± 4 μs, which decreased to 164 ± 8.0 μs in the presence of asiaticoside, clearly indicating that asiaticoside inhibited the early stages Aβ(1–42) of fibrillation, leaving more free Aβs in the solution and permitting their rapid diffusion in the confocal volume. The inhibitory effects were also evidenced by reduced fiber formation as assessed by steady-state and kinetic ThT fluorospectroscopy, LSM, and TEM. Asiaticoside elongated the lag phase of Aβ(1–42) fibrillation, indicating the formation of smaller amyloid species were impaired in the presence of asiaticoside. Molecular docking revealed that asiaticoside binds with amyloid intra- and inter-molecular amino acid residues, which are responsible for β-sheet formation and longitudinal extension of fibrils. CONCLUSION: Finally, asiaticoside prevents amyloidogenesis that precedes neurodegeneration in patients with Alzheimer’s disease.