Cargando…
Mephedrone and Nicotine: Oxidative Stress and Behavioral Interactions in Animal Models
The purpose of our experiment was to examine the influence of co-administration of nicotine and mephedrone on anxiety-like behaviors, cognitive processes and the nicotine-induced behavioral sensitization as well as processes connected with induction of oxidative stress in the brain of male Swiss mic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422847/ https://www.ncbi.nlm.nih.gov/pubmed/25862193 http://dx.doi.org/10.1007/s11064-015-1566-5 |
Sumario: | The purpose of our experiment was to examine the influence of co-administration of nicotine and mephedrone on anxiety-like behaviors, cognitive processes and the nicotine-induced behavioral sensitization as well as processes connected with induction of oxidative stress in the brain of male Swiss mice. The results revealed that co-administration of subthreshold doses of mephedrone and nicotine (0.05 mg/kg each) exerted marked anxiogenic profile in the elevated plus maze and displayed pro-cognitive action in the passive avoidance paradigm (nicotine 0.05 mg/kg and mephedrone 2.5 mg/kg). Furthermore, one of the main findings of the present study was that mephedrone, administered alone at the dose not affecting locomotor activity of mice (1 mg/kg), enhanced the expression of nicotine-induced locomotor sensitization. Moreover, mephedrone administered with nicotine decreased general antioxidant status and catalase activity as well as antioxidant enzymes activity in the hippocampus and prefrontal cortex and increased concentration of malondialdehyde, an indicator of lipid peroxidation processes. Considering the likelihood that mephedrone is taken as a part of polydrug combination with nicotine, the effects of this combination on mammalian organisms have been confirmed in our study. Understanding the consequences of co-administration of psychoactive substances on the central nervous system and oxidative processes in the brain provide the important toxicological significance, and may be useful in polydrug intoxication treatment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11064-015-1566-5) contains supplementary material, which is available to authorized users. |
---|